我要投稿 投訴建議

《平面向量》說(shuō)課稿

時(shí)間:2021-03-25 11:10:12 說(shuō)課稿 我要投稿

《平面向量》說(shuō)課稿

  作為一位不辭辛勞的人民教師,總不可避免地需要編寫說(shuō)課稿,說(shuō)課稿有助于順利而有效地開展教學(xué)活動(dòng)。那么應(yīng)當(dāng)如何寫說(shuō)課稿呢?下面是小編精心整理的《平面向量》說(shuō)課稿,希望能夠幫助到大家。

《平面向量》說(shuō)課稿

  《平面向量》說(shuō)課稿1

  一、說(shuō)教材

  平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標(biāo)表示把向量之間的運(yùn)算轉(zhuǎn)化為數(shù)之間的運(yùn)算。本節(jié)內(nèi)容是在平面向量的坐標(biāo)表示以及平面向量的數(shù)量積及其運(yùn)算律的基礎(chǔ)上,介紹了平面向量數(shù)量積的坐標(biāo)表示,平面兩點(diǎn)間的距離公式,和向量垂直的坐標(biāo)表示的充要條件。為解決直線垂直問題,三角形邊角的有關(guān)問題提供了很好的辦法。本節(jié)內(nèi)容也是全章重要內(nèi)容之一。

  二、說(shuō)學(xué)習(xí)目標(biāo)和要求

  通過(guò)本節(jié)的學(xué)習(xí),要讓學(xué)生掌握

  (1)、平面向量數(shù)量積的坐標(biāo)表示。

  (2)、平面兩點(diǎn)間的距離公式。

  (3)、向量垂直的坐標(biāo)表示的充要條件。

  以及它們的一些簡(jiǎn)單應(yīng)用,以上三點(diǎn)也是本節(jié)課的重點(diǎn),本節(jié)課的難點(diǎn)是向量垂直的坐標(biāo)表示的充要條件以及它的靈活應(yīng)用。

  三、說(shuō)教法

  在教學(xué)過(guò)程中,我主要采用了以下幾種教學(xué)方法、

  (1)啟發(fā)式教學(xué)法

  因?yàn)楸竟?jié)課重點(diǎn)的坐標(biāo)表示公式的推導(dǎo)相對(duì)比較容易,所以這節(jié)課我準(zhǔn)備讓學(xué)生自行推導(dǎo)出兩個(gè)向量數(shù)量積的坐標(biāo)表示公式,然后引導(dǎo)學(xué)生發(fā)現(xiàn)幾個(gè)重要的結(jié)論、如模的計(jì)算公式,平面兩點(diǎn)間的距離公式,向量垂直的坐標(biāo)表示的充要條件。

  (2)講解式教學(xué)法

  主要是講清概念,解除學(xué)生在概念理解上的疑惑感;例題講解時(shí),演示解題過(guò)程!

  主要輔助教學(xué)的手段(powerpoint)。

  (3)討論式教學(xué)法

  主要是通過(guò)學(xué)生之間的相互交流來(lái)加深對(duì)較難問題的理解,提高學(xué)生的自學(xué)能力和發(fā)現(xiàn)、分析、解決問題以及創(chuàng)新能力。

  四、說(shuō)學(xué)法

  學(xué)生是課堂的主體,一切教學(xué)活動(dòng)都要圍繞學(xué)生展開,借以誘發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)課堂上和學(xué)生的交流,從而達(dá)到及時(shí)發(fā)現(xiàn)問題,解決問題的目的。通過(guò)精講多練,充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的積極性。如讓學(xué)生自己動(dòng)手推導(dǎo)兩個(gè)向量數(shù)量積的坐標(biāo)公式,引導(dǎo)學(xué)生推導(dǎo)4個(gè)重要的結(jié)論!并在具體的問題中,讓學(xué)生建立方程的思想,更好的解決問題!

  五、說(shuō)教學(xué)過(guò)程

  這節(jié)課我準(zhǔn)備這樣進(jìn)行、

  首先提出問題、要算出兩個(gè)非零向量的數(shù)量積,我們需要知道哪些量?

  繼續(xù)提出問題、假如知道兩個(gè)非零向量的坐標(biāo),是不是可以用這兩個(gè)向量的坐標(biāo)來(lái)表示這兩個(gè)向量的數(shù)量積呢?

  引導(dǎo)學(xué)生自己推導(dǎo)平面向量數(shù)量積的坐標(biāo)表示公式,在此公式基礎(chǔ)上還可以引導(dǎo)學(xué)生得到以下幾個(gè)重要結(jié)論。

  (1) 模的計(jì)算公式

  (2)平面兩點(diǎn)間的距離公式。

  (3)兩向量夾角的余弦的坐標(biāo)表示

  (4)兩個(gè)向量垂直的標(biāo)表示的充要條件

  第二部分是例題講解,通過(guò)例題講解,使學(xué)生更加熟悉公式并會(huì)加以應(yīng)用。

  例題1是書上122頁(yè)例1,此題是直接用平面向量數(shù)量積的坐標(biāo)公式的題,目的是讓學(xué)生熟悉這個(gè)公式,并在此題基礎(chǔ)上,求這兩個(gè)向量的夾角?目的是讓學(xué)生熟悉兩向量夾角的余弦的坐標(biāo)表示公式例題2是直接證明直線垂直的題,雖然比較簡(jiǎn)單,但體現(xiàn)了一種重要的證明方法,這種方法要讓學(xué)生掌握,其實(shí)這一例題也是兩個(gè)向量垂直坐標(biāo)表示的充要條件的一個(gè)應(yīng)用、即兩個(gè)向量的數(shù)量積是否為零是判斷相應(yīng)的兩條直線是否垂直的重要方法之一。

  例題3是在例2的基礎(chǔ)上稍微作了一下改變,目的是讓學(xué)生會(huì)應(yīng)用公式來(lái)解決問題,并讓學(xué)生在這要有建立方程的思想。

  再配以練習(xí),讓學(xué)生能熟練的應(yīng)用公式,掌握今天所學(xué)內(nèi)容。

  《平面向量》說(shuō)課稿2

尊敬的各位評(píng)委、各位老師:

  大家好!

  今天我說(shuō)課的題目是《平面向量的數(shù)量積》。下面我將從四個(gè)方面闡述我對(duì)本節(jié)課的分析和設(shè)計(jì)。

  第一部分、教學(xué)內(nèi)容分析、

  1、教材的地位及作用、

  將平面向量引入高中課程,是現(xiàn)行數(shù)學(xué)教材的重要特色之一。由于向量既能體現(xiàn)“形”的直觀位置特征,又具有“數(shù)”的良好運(yùn)算性質(zhì),是數(shù)形結(jié)合和轉(zhuǎn)換的橋梁。而這一切之所以能夠?qū)崿F(xiàn),平面向量的數(shù)量積功不可沒。《平面向量的數(shù)量積》是高一數(shù)學(xué)下冊(cè)第五章第六節(jié)的內(nèi)容。平面向量數(shù)量積是中學(xué)數(shù)學(xué)的一個(gè)重要概念。它的性質(zhì)很多,應(yīng)用很廣,是后面學(xué)習(xí)的重要基礎(chǔ)。本課是第一課時(shí),學(xué)生對(duì)概念的理解尤為重要。

  2、教學(xué)目標(biāo)的設(shè)定、

  (1)知識(shí)目標(biāo)、

  平面向量數(shù)量積的定義及初步運(yùn)用。

  (2)能力目標(biāo)、

  通過(guò)對(duì)平面向量數(shù)量積定義的剖析,培養(yǎng)學(xué)生分析問題發(fā)現(xiàn)問題能力,使學(xué)生的思維能力得到訓(xùn)練。

  (3)情感目標(biāo)、

  通過(guò)本節(jié)課的學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,體會(huì)學(xué)習(xí)的快樂。

  3、教學(xué)重點(diǎn)、平面向量的數(shù)量積定義。

  4、教學(xué)難點(diǎn)、平面向量的數(shù)量積定義及平面向量數(shù)量積的運(yùn)用。

  第二部分、教法分析、

  采用啟發(fā)引導(dǎo)式與講練相結(jié)合,并借助多媒體教學(xué)手段,使學(xué)生理解平面向量數(shù)量積的定義,理解定義之后引導(dǎo)學(xué)生推導(dǎo)數(shù)量積的性質(zhì),通過(guò)例題和練習(xí)加深學(xué)生對(duì)平面向量數(shù)量積定義的認(rèn)識(shí),初步掌握平面向量數(shù)量積定義的運(yùn)用。

  《平面向量》說(shuō)課稿3

  一、 教材分析

  1、本課的地位及作用、平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運(yùn)算兩個(gè)知識(shí)點(diǎn)緊密聯(lián)系起來(lái),是全章重點(diǎn)之一。

  2、學(xué)生情況分析、在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運(yùn)算,但數(shù)量積是用長(zhǎng)度和夾角這兩個(gè)概念來(lái)表示的,應(yīng)用起來(lái)不太方便,如何用坐標(biāo)這一最基本、最常用的工具來(lái)表示數(shù)量積,使之應(yīng)用更方便,就是擺在學(xué)生面前的一個(gè)亟待解決的問題。因此,本節(jié)內(nèi)容的學(xué)習(xí)是學(xué)生認(rèn)知發(fā)展和知識(shí)構(gòu)建的一個(gè)合情、合理的“生長(zhǎng)點(diǎn)”。所以,本節(jié)課采取以學(xué)生自主完成為主,教師查漏補(bǔ)缺的教學(xué)方法。因此結(jié)合中學(xué)生的認(rèn)知結(jié)構(gòu)特點(diǎn)和學(xué)生實(shí)際。

  二、 教學(xué)方法和手段

  1、教學(xué)方法、結(jié)合本節(jié)教材淺顯易懂,又有前面平面向量的數(shù)量積和向量的坐標(biāo)表示等知識(shí)作鋪墊的內(nèi)容特點(diǎn),兼顧高一學(xué)生已具備一定的數(shù)學(xué)思維能力和處理向量問題的方法的現(xiàn)狀,我主要采用“誘思探究教學(xué)法”,其核心是“誘導(dǎo)思維,探索研究”,其教學(xué)思想是“教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的原則,為此,我通過(guò)精心設(shè)置的一個(gè)個(gè)問題,激發(fā)學(xué)生的求知欲,積極的鼓勵(lì)學(xué)生的參與,給學(xué)生獨(dú)立思考的空間,鼓勵(lì)學(xué)生自主探索,最終在教師的指導(dǎo)下去探索發(fā)現(xiàn)問題,解決問題。在教學(xué)中,我適時(shí)的對(duì)學(xué)生學(xué)習(xí)過(guò)程給予評(píng)價(jià),適當(dāng)?shù)脑u(píng)價(jià),可以培養(yǎng)學(xué)生的自信心,合作交流的意識(shí),更進(jìn)一步地激發(fā)了學(xué)生的學(xué)習(xí)興趣,讓他們體驗(yàn)成功的喜悅。

  2、教學(xué)手段、利用多媒體輔助教學(xué),可以加大一堂課的信息容量,極大提高學(xué)生的學(xué)習(xí)興趣。

  三、 學(xué)法指導(dǎo)

  改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。獨(dú)立思考,自主探索,動(dòng)手實(shí)踐,合作交流等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為在教師引導(dǎo)下的“再創(chuàng)造”的過(guò)程。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨(dú)立思考,積極探索的習(xí)慣。為了實(shí)現(xiàn)這一目標(biāo),本節(jié)教學(xué)讓學(xué)生主動(dòng)參與,讓學(xué)生動(dòng)手,動(dòng)口、動(dòng)腦。通過(guò)思考、計(jì)算、歸納、推理,鼓勵(lì)學(xué)生多向思維,積極活動(dòng),勇于探索。

  1、通過(guò)提出問題,把問題的求解與探究貫穿整堂課,使學(xué)生在自主探究中發(fā)現(xiàn)了結(jié)論,推廣了命題,使學(xué)生感到成果是自己得到的,增強(qiáng)了成就感,培養(yǎng)了學(xué)生學(xué)好數(shù)學(xué)的信心和良好的學(xué)習(xí)動(dòng)機(jī)。

  2、通過(guò)數(shù)與形的充分挖掘,通過(guò)對(duì)向量平行與垂直條件的坐標(biāo)表示的類比,培養(yǎng)了學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想,教給了學(xué)生類比聯(lián)想的記憶方法。

  四、教學(xué)程序

  本節(jié)課分為復(fù)習(xí)回顧、定理推導(dǎo)、引申推廣、例題講析、練習(xí)與小結(jié)五部分。

  復(fù)習(xí)回顧部分通過(guò)兩個(gè)問題,復(fù)習(xí)了與本節(jié)內(nèi)容相關(guān)的數(shù)量積概念,為本節(jié)內(nèi)容的學(xué)習(xí)作了必要的鋪墊。

  定理推導(dǎo)部分通過(guò)設(shè)問,引出尋求向量的數(shù)量積的坐標(biāo)表示的必要性,引入課題,并引導(dǎo)學(xué)生應(yīng)用前述知識(shí)共同推導(dǎo)出數(shù)量積的坐標(biāo)表示。

  引申推廣部分,讓學(xué)生自主推導(dǎo)出向量的長(zhǎng)度公式,向量垂直條件的坐標(biāo)表示、夾角公式等三個(gè)結(jié)論,強(qiáng)化了學(xué)生的動(dòng)手能力和自主探究能力。

  例題講析,通過(guò)四道緊扣教材的例題的精講,突出了結(jié)論的應(yīng)用,也起到了示范作用。

  練習(xí)及小結(jié)、通過(guò)練習(xí)題驗(yàn)收教學(xué)效果,突出訓(xùn)練主線,小結(jié)部分畫龍點(diǎn)睛,強(qiáng)調(diào)本節(jié)重點(diǎn)。再結(jié)合課后作業(yè),進(jìn)一步實(shí)現(xiàn)本節(jié)課的教學(xué)目的。同時(shí)小結(jié)也體現(xiàn)主體性,由教師提出問題學(xué)生總結(jié)得出。

  《平面向量》說(shuō)課稿4

各位評(píng)委、各位老師:

  大家好!

  今天,我說(shuō)課的內(nèi)容是、人教A版必修四第二章第三節(jié)《平面向量的基本定理及坐標(biāo)表示》第一課時(shí),下面,我將從教材分析、教法分析、學(xué)法指導(dǎo)、教學(xué)過(guò)程以及設(shè)計(jì)說(shuō)明五個(gè)方面來(lái)闡述一下我對(duì)本節(jié)課的設(shè)計(jì)。

  一、教材分析、

  1、教材的地位和作用、

  向量是溝通代數(shù)、幾何與三角函數(shù)x的一種工具,有著極其豐富的實(shí)際背景。本課時(shí)內(nèi)容包含“平面向量基本定理”和“平面向量的正交分解及坐標(biāo)表示”。此前的教學(xué)內(nèi)容由實(shí)際問題引入向量概念,研究了向量的線性運(yùn)算,集中反映了向量的幾何特征,而本課時(shí)之后的內(nèi)容主要是研究向量的坐標(biāo)運(yùn)算,更多的是向量的代數(shù)形態(tài)。平面向量基本定理是坐標(biāo)表示的基礎(chǔ),坐標(biāo)表示使平面中的向量與它的坐標(biāo)建立起了一一對(duì)應(yīng)的關(guān)系,這為通過(guò)“數(shù)”的運(yùn)算處理“形”的問題搭起了橋梁,也決定了本課內(nèi)容在向量知識(shí)體系中的核心地位。

  2、教學(xué)目標(biāo)、根據(jù)教學(xué)內(nèi)容的特點(diǎn),依據(jù)新課程標(biāo)準(zhǔn)的具體要求,我從以下三個(gè)方面來(lái)確定本節(jié)課的教學(xué)目標(biāo)。

  (1)知識(shí)與技能

  了解向量夾角的概念,了解平面向量基本定理及其意義,掌握平面向量的正交 分解及其坐標(biāo)表示。

  (2)過(guò)程與方法

  通過(guò)對(duì)平面向量基本定理的探究,以及平面向量坐標(biāo)建立的過(guò)程,讓學(xué)生體驗(yàn)數(shù)學(xué)定理的產(chǎn)生、形成過(guò)程,體驗(yàn)由一般到特殊、類比以及數(shù)形結(jié)合的'數(shù)學(xué)思想,從而實(shí)現(xiàn)向量的“量化”表示。

  (3)情感、態(tài)度與價(jià)值觀

  引導(dǎo)學(xué)生從生活中挖掘數(shù)學(xué)內(nèi)容,培養(yǎng)學(xué)生的發(fā)現(xiàn)意識(shí)和應(yīng)用意識(shí),提高學(xué)習(xí)數(shù)學(xué)的興趣,感受數(shù)學(xué)的魅力。

  3、教學(xué)重點(diǎn)和難點(diǎn)、根據(jù)教材特點(diǎn)及教學(xué)目標(biāo)的要求,我將教學(xué)重點(diǎn)確定為———平面向量基本定理的探究,以及平面向量的坐標(biāo)表示

  教學(xué)難點(diǎn)、對(duì)平面向量基本定理的理解及其應(yīng)用

  二、教法分析、

  針對(duì)本節(jié)課的教學(xué)目標(biāo)和學(xué)生的實(shí)際情況,根據(jù)“先學(xué)后教,以學(xué)定教”原則,本節(jié)課采用由“自學(xué)—探究—點(diǎn)撥—建構(gòu)—拓展”五個(gè)環(huán)節(jié)構(gòu)成的誘導(dǎo)式學(xué)案導(dǎo)學(xué)方法。

  三、學(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。由于學(xué)生已經(jīng)掌握了向量的概念和簡(jiǎn)單的線性運(yùn)算,并且對(duì)向量的物理背景有初步的了解,我引導(dǎo)學(xué)生采用問題探究式學(xué)法。讓學(xué)生借助學(xué)案,在教師創(chuàng)設(shè)的情境下,根據(jù)已有的知識(shí)和經(jīng)驗(yàn),主動(dòng)探索,積極交流,從而建立新的認(rèn)知結(jié)構(gòu)。

  四、重點(diǎn)說(shuō)明本節(jié)課的教學(xué)過(guò)程

  本節(jié)課共設(shè)計(jì)了五個(gè)環(huán)節(jié)、發(fā)放學(xué)案,依案自學(xué);分組探究 ,信息反饋;精講點(diǎn)撥,解難釋疑 ;歸納總結(jié),建構(gòu)網(wǎng)絡(luò) ;當(dāng)堂達(dá)標(biāo),遷移拓展 。

  1、發(fā)放學(xué)案,依案自學(xué)

  學(xué)習(xí)并非學(xué)生對(duì)教師授予知識(shí)的被動(dòng)接受,而是學(xué)習(xí)者以自身已有的知識(shí)和經(jīng)驗(yàn)為基礎(chǔ)的主動(dòng)建構(gòu)。根據(jù)這一理念,我在課前下發(fā)“導(dǎo)學(xué)學(xué)案”,讓學(xué)生以學(xué)案為依據(jù),以學(xué)習(xí)目標(biāo)、學(xué)習(xí)重點(diǎn)難點(diǎn)為主攻方向,主動(dòng)查閱教材、工具書,思考問題,分析解決問題,在嘗試中獲取知識(shí),發(fā)展能力。這是我編制學(xué)案的綱要。

  經(jīng)過(guò)學(xué)生的自學(xué),在課堂上,我采用提問的方式,讓學(xué)生對(duì)知識(shí)點(diǎn)進(jìn)行簡(jiǎn)單概述,并闡述自己的學(xué)習(xí)方法和體會(huì)。其中,向量的夾角概念,學(xué)生基本上能獨(dú)立解決,我會(huì)引導(dǎo)學(xué)生歸納出求兩個(gè)向量夾角的要點(diǎn):

  (1)兩個(gè)向量要共起點(diǎn)。

  (2)兩個(gè)向量的正方向所成的角。

  然后,通過(guò)學(xué)案上的練習(xí)題目1,檢查學(xué)生的掌握程度。對(duì)本節(jié)課的重點(diǎn)和難點(diǎn)、平面向量基本定理的探究及坐標(biāo)表示,我準(zhǔn)備通過(guò)分組探究,精講點(diǎn)撥,歸納總結(jié)三個(gè)方面來(lái)突破。

  2、分組探究 ,信息反饋

  這一環(huán)節(jié),我先把學(xué)生分組,讓其對(duì)定理及坐標(biāo)表示,進(jìn)行討論、探究、交流,先組內(nèi)互相啟發(fā),消化個(gè)體疑點(diǎn),然后以組為單位提出疑問。如果某個(gè)問題,某個(gè)組已經(jīng)解決,其它組仍是疑點(diǎn),我讓已解決問題的小組做一次"教師",面向全體學(xué)生講解,教師可以適當(dāng)補(bǔ)充點(diǎn)撥,這也可以說(shuō)是討論的繼續(xù)。對(duì)于難度較大的傾向性問題,我準(zhǔn)備

  3、精講點(diǎn)撥,解難釋疑

  本節(jié)課的目的是要幫助學(xué)生建立向量的坐標(biāo)。要求先運(yùn)用已有的知識(shí)去研究平面向量的基本定理,然后以這個(gè)定理為基礎(chǔ)建立向量的坐標(biāo)。對(duì)于定理的探究,有些學(xué)生只是從形式上加以記憶,缺乏對(duì)問題本質(zhì)的理解,為了幫助學(xué)生改進(jìn)學(xué)習(xí)方法,提升數(shù)學(xué)能力,我先提問學(xué)生如何把平面上任一向量分解成兩個(gè)不共線向量的線性組合,學(xué)生會(huì)通過(guò)作圖來(lái)說(shuō)明這一問題。我們要強(qiáng)調(diào)的是,這里的向量是自由向量,其起點(diǎn)是可以移動(dòng)的,將三個(gè)向量的起點(diǎn)放在一起可便于研究問題。類比物理上力的分解,利用平行四邊形法則,我們把向量 分解成 ,根據(jù)向量共線定理 ,存在一對(duì)實(shí)數(shù)λ1,λ2 ,使 , 從而 =λ1 +λ2 ,教師再引導(dǎo)學(xué)生自主歸納,從而得出平面向量基本定理。為了加深對(duì)定理的理解,我設(shè)計(jì)了如下的幾個(gè)問題,學(xué)生思考回答后,教師再利用幾何畫板作進(jìn)一步的演示。當(dāng) , 共線時(shí),與它們不共線的向量 不能用 , 當(dāng)線性表示,所以共線向量不能作為基底;當(dāng)不共線向量 , ,任意 確定后,λ1,λ2是唯一確定的;我們改變向量 的大小和方向,發(fā)現(xiàn) 仍然可以用 , 線性表示,說(shuō)明了任意向量 能分解成兩個(gè)不共線向量的線性組合;改變基底 , 的大小和方向,保持向量 不變,剛才的結(jié)論仍然成立,說(shuō)明了同一個(gè)向量 能用不同的基底線性表示,由此說(shuō)明基底不唯一,具有可選擇性。

  對(duì)于向量的坐標(biāo)表示,我先用火箭速度的分解引入正交分解,然后提問、根據(jù)平面向量基本定理,基底是可以選擇的,為了研究的方便,我們應(yīng)該選取什么樣的基底呢?引導(dǎo)學(xué)生由一般到特殊,選擇平面直角坐標(biāo)系中 軸和 軸上,且方向與軸的正方向同向的單位向量 做基底,那么根據(jù)剛剛得出的定理,任一向量 =x +y ,由于x,y是唯一的,于是存在數(shù)對(duì)(x,y)與向量a一一對(duì)應(yīng),從而得到平面向量的坐標(biāo)表示。需要說(shuō)明的兩點(diǎn)是、第一,向量的坐標(biāo)表示與其分解形式是等價(jià)的,可以互相轉(zhuǎn)化。第二點(diǎn)說(shuō)明、求向量坐標(biāo)的關(guān)鍵是構(gòu)造平行四邊形,確定實(shí)數(shù)x、y。學(xué)生在理解起點(diǎn)不在坐標(biāo)原點(diǎn)的向量的坐標(biāo)表示時(shí)會(huì)出現(xiàn)障礙,其原因是在直角坐標(biāo)系中點(diǎn)和點(diǎn)的坐標(biāo)是一一對(duì)應(yīng)的,到了向量時(shí),向量的坐標(biāo)只是和從原點(diǎn)出發(fā)的向量一一對(duì)應(yīng),必須使學(xué)生在這種特定的場(chǎng)合中明白:要求點(diǎn) 的坐標(biāo)就是要求向量 的坐標(biāo)。只要結(jié)合向量相等的條件學(xué)生應(yīng)該容易克服這一難點(diǎn)。隨后,通過(guò)學(xué)案上的練習(xí)2,讓學(xué)生鞏固所學(xué)知識(shí)。

  4、第四個(gè)環(huán)節(jié),歸納總結(jié),建構(gòu)網(wǎng)絡(luò)

  建構(gòu)主義教學(xué)理論認(rèn)為,知識(shí)是主體在與情境的交互作用中、在解決問題的過(guò)程中能動(dòng)地構(gòu)建起來(lái)的,學(xué)生應(yīng)在教師指導(dǎo)下自主歸納出新舊知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,構(gòu)建知識(shí)網(wǎng)絡(luò),從而培養(yǎng)學(xué)生的分析能力和綜合能力。為此,我設(shè)計(jì)了如下的問題、

  通過(guò)本節(jié)課的學(xué)習(xí),你收獲了什么?

  在學(xué)生回答的過(guò)程中,我及時(shí)反饋,評(píng)價(jià)學(xué)生課堂表現(xiàn),起導(dǎo)向作用。

  5、第五個(gè)環(huán)節(jié),當(dāng)堂達(dá)標(biāo),遷移拓展

  本部分檢測(cè)題,緊扣目標(biāo),當(dāng)堂訓(xùn)練,而為了尊重學(xué)生的個(gè)體差異,滿足多樣化學(xué)習(xí)的需要,我又分必做和選做兩部分來(lái)布置題目,允許學(xué)生根據(jù)個(gè)人情況來(lái)完成。

  五、我說(shuō)課的最后一部分是教學(xué)設(shè)計(jì)說(shuō)明

  1、貫徹了學(xué)生主體、教師主導(dǎo)的原則

  “學(xué)案導(dǎo)學(xué)”要求學(xué)生主動(dòng)試一試,并給予學(xué)生充分自由思考的時(shí)間。學(xué)生在嘗試中遇到問題就會(huì)主動(dòng)地去自學(xué)課本和接受教師的指導(dǎo)。這樣,學(xué)習(xí)就變成了學(xué)生自身的需要,使他們產(chǎn)生了“我要學(xué)”的愿望,在這種動(dòng)機(jī)支配下學(xué)生就會(huì)依靠自己的力量積極主動(dòng)地去學(xué)習(xí)。

  教師通過(guò)啟發(fā)、激勵(lì),誘導(dǎo)學(xué)生全員、全過(guò)程參與教學(xué)過(guò)程,體現(xiàn)教師的主導(dǎo)作用。

  2、培養(yǎng)了自主探索,合作交流的能力

  新的課程理念,要求學(xué)生的學(xué)習(xí)不僅僅是在理解基礎(chǔ)上掌握和記憶知識(shí),還要學(xué)習(xí)探索和解決問題的方法和途徑。

  本節(jié)課采用誘導(dǎo)式教學(xué)方法,通過(guò)問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,掌握數(shù)學(xué)知識(shí)、形成數(shù)學(xué)能力,培養(yǎng)探索精神和團(tuán)隊(duì)意識(shí)。

  我相信,通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生獲取的將不僅僅是知識(shí),獲取知識(shí)的手段、途徑和方法,以及勇于探索、合作交流的能力,才是他們最大的收獲。

  《平面向量》說(shuō)課稿5

各位評(píng)委,老師們:

  大家好!

  很高興參加這次說(shuō)課活動(dòng)。這對(duì)我來(lái)說(shuō)也是一次難得的學(xué)習(xí)和鍛煉的機(jī)會(huì),感謝各位老師在百忙之中來(lái)此予以指導(dǎo)。希望各位評(píng)委和老師們對(duì)我的說(shuō)課內(nèi)容提出寶貴意見。

  我說(shuō)課的內(nèi)容是平面向量的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級(jí)中學(xué)教科書(試驗(yàn)修訂本—必修)數(shù)學(xué)第一冊(cè)下,教學(xué)內(nèi)容為第96頁(yè)至98頁(yè)第五章第一節(jié)。本校是浙江省一級(jí)重點(diǎn)中學(xué),學(xué)生基礎(chǔ)相對(duì)較好。我在進(jìn)行教學(xué)設(shè)計(jì)時(shí),也充分考慮到了這一點(diǎn)。

  下面我從教材分析,教學(xué)目標(biāo)的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設(shè)計(jì)四個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。

  一、教材分析

  (1)地位和作用

  向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運(yùn)算(運(yùn)算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實(shí)際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。

  平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進(jìn)一步對(duì)向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識(shí)體系奠定了知識(shí)和方法基礎(chǔ)。

  (2)教學(xué)結(jié)構(gòu)的調(diào)整

  課本在這一部分內(nèi)容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長(zhǎng)度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認(rèn)知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過(guò)程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨(dú)立完成。

  (3)重點(diǎn),難點(diǎn),關(guān)鍵

  由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識(shí)的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點(diǎn)。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計(jì)的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗(yàn),多數(shù)學(xué)生對(duì)向量的認(rèn)識(shí)還比較單一,僅僅考慮其大小,忽略其方向,這對(duì)學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進(jìn)行辨認(rèn),加深對(duì)向量的理解。

  二、教學(xué)目標(biāo)的確定

  根據(jù)本課教材的特點(diǎn),新大綱對(duì)本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標(biāo):

  (1)基礎(chǔ)知識(shí)目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會(huì)用字母表示向量,能讀寫已知圖中的向量。會(huì)根據(jù)圖形判定向量是否平行,共線,相等。

  (2)能力訓(xùn)練目標(biāo)、培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問題,分析問題,解決問題的能力。

  (3)情感目標(biāo)、讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂趣。

  三、教學(xué)方法的選擇

  Ⅰ教學(xué)方法

  本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):

  (1)由教材的特點(diǎn)確立類比思維為教學(xué)的主線。

  從教材內(nèi)容看平面向量無(wú)論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運(yùn)用類比作為思維的主線進(jìn)行教學(xué)。讓學(xué)生充分體會(huì)數(shù)學(xué)知識(shí)與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。

  (2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習(xí)方法

  通常學(xué)生對(duì)于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表?yè)P(yáng),多肯定來(lái)激勵(lì)他們的學(xué)習(xí)熱情。考慮到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對(duì)自主探索式的學(xué)習(xí)方法也有一定的認(rèn)識(shí),所以在教學(xué)中我通過(guò)創(chuàng)設(shè)問題情境,啟發(fā)引導(dǎo)學(xué)生運(yùn)用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨(dú)立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。

  Ⅱ教學(xué)手段

  本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計(jì)算機(jī)來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺(tái);計(jì)算機(jī)演示的作圖過(guò)程則有助于滲透數(shù)形結(jié)合思想,更易于對(duì)概念的理解和難點(diǎn)的突破。

  四、教學(xué)過(guò)程的設(shè)計(jì)

  Ⅰ知識(shí)引入階段———提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)

  (1)創(chuàng)設(shè)情境——引入概念

  數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪腥グl(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。

  由生活中具體的向量的實(shí)例引入:大海中船只的航線,中國(guó)象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

  (2)觀察歸納——形成概念

  由實(shí)例得出有向線段的概念,有向線段的三個(gè)要素:起點(diǎn),方向,長(zhǎng)度。明確知道了有向線段的起點(diǎn),方向和長(zhǎng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設(shè)計(jì),引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn)、向量的概念及其幾何表示。

  (3)討論研究——深化概念

  在得到概念后進(jìn)行歸納,深化,之后向?qū)W生提出以下三個(gè)問題:

  ①向量的要素是什么?

  ②向量之間能否比較大小?

  ③向量與數(shù)量的區(qū)別是什么?

  同時(shí)指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。

  Ⅱ知識(shí)探索階段———探索平面向量的平行向量。相等向量等概念

  (1)總結(jié)反思——提高認(rèn)識(shí)

  方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長(zhǎng)度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

  (2)即時(shí)訓(xùn)練—鞏固新知

  為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,通過(guò)學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來(lái)鞏固新知識(shí)。

  [練習(xí)1]判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.

【《平面向量》說(shuō)課稿】相關(guān)文章:

高二平面向量知識(shí)課件09-25

說(shuō)課稿模板說(shuō)課稿范文11-08

平面設(shè)計(jì)個(gè)人工作計(jì)劃02-26

平面設(shè)計(jì)師工作計(jì)劃02-23

《春聯(lián)》說(shuō)課稿12-16

春聯(lián)說(shuō)課稿11-12

《草原》說(shuō)課稿11-26

《勸學(xué)》說(shuō)課稿11-16

《林海》說(shuō)課稿12-02

《太陽(yáng)》說(shuō)課稿05-16

真人一级一级97一片a毛片√91,91精品丝袜无码人妻一区,亚国产成人精品久久久,亚洲色成人一区二区三区
中文字幕色色五月天 | 亚洲日韩乱码中文字幕在线 | 中文字幕乱在线伦视频日韩 | 专区一va亚洲v专区在线专区 | 一级午夜理论片日本在线 | 亚洲一级高清在线观看 |