集合的運算說課稿(通用5篇)
作為一位杰出的老師,可能需要進行說課稿編寫工作,說課稿有助于順利而有效地開展教學活動。那么你有了解過說課稿嗎?以下是小編為大家整理的集合集合的運算說課稿(通用5篇),供大家參考借鑒,希望可以幫助到有需要的朋友。
集合的運算說課稿1
教學目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;
(3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
課 型:新授課
教學重點:
集合的交集與并集、補集的概念;
教學難點:
集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;
教學過程:
1、引入課題
我們兩個實數除了可以比較大小外,還可以進行加法運算,類比實數的加法運算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
2、新課教學
1.并集
一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個集合求并集,結果還是一個集合,是由集合A與B的所有元素組成的集合(重復元素只看成一個元素)。
例題(P9-10例4、例5)
說明:連續的(用不等式表示的)實數集合可以用數軸上的一段封閉曲線來表示。
問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應是我們所關心的,我們稱其為集合A與B的交集。
2.交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個集合求交集,結果還是一個集合,是由集合A與B的公共元素組成的集合。
例題(P9-10例6、例7)
拓展:求下列各圖中集合A與B的并集與交集
說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3.補集
全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。
補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(complementary set),簡稱為集合A的補集,
記作:CUA
即:CUA={x|x∈U且x∈A}
補集的Venn圖表示
說明:補集的概念必須要有全集的限制
例題(P12例8、例9)
4.求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法。
5.集合基本運算的一些結論:
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=
若A∩B=A,則AB,反之也成立
若A∪B=B,則AB,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
6.課堂練習
(1)設A={奇數}、B={偶數},則A∩Z=A,B∩Z=B,A∩B=
(2)設A={奇數}、B={偶數},則A∪Z=Z,B∪Z=Z,A∪B=Z
3、歸納小結(略)
4、作業布置
1、書面作業:P13習題1.1,第6-12題
2、提高內容:
(1)已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且,試求p、q;
(2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;
(3)A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB ={3,7},求B。
集合的運算說課稿2
一. 教學目標:
1. 知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集.
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集.
(3)能使用Venn圖表達集合的運算,體會直觀圖示對理解抽象概念的作用.
2. 過程與方法
學生通過觀察和類比,借助Venn圖理解集合的基本運算.
3.情感.態度與價值觀
(1)進一步樹立數形結合的思想.
(2)進一步體會類比的作用.
(3)感受集合作為一種語言,在表示數學內容時的簡潔和準確.
二.教學重點.難點
重點:交集與并集,全集與補集的概念.
難點:理解交集與并集的概念.符號之間的區別與聯系.
三.學法與教學用具
1.學法:學生借助Venn圖,通過觀察.類比.思考.交流和討論等,理解集合的基本運算.
2.教學用具:投影儀.
四. 教學思路
(一)創設情景,揭示課題
問題1:我們知道,實數有加法運算。類比實數的加法運算,集合是否也可以“相加”呢?
請同學們考察下列各個集合,你能說出集合C與集合A.B之間的關系嗎?
引導學生通過觀察,類比.思考和交流,得出結論。教師強調集合也有運算,這就是我們本節課所要學習的內容。
(二)研探新知
l.并集
—般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集.
記作:A∪B.
讀作:A并B.
其含義用符號表示為:
用Venn圖表示如下:
請同學們用并集運算符號表示問題1中A,B,C三者之間的關系.
練習.檢查和反饋
(1)設A={4,5,6,8),B={3,5,7,8),求A∪B.
(2)設集合
讓學生獨立完成后,教師通過檢查,進行反饋,并強調:
(1)在求兩個集合的并集時,它們的公共元素在并集中只能出現一次.
(2)對于表示不等式解集的集合的運算,可借助數軸解題.
2.交集
(1)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?
請同學們考察下面的問題,集合A.B與集合C之間有什么關系?
②B={|是新華中學2004年9月入學的高一年級同學},C={|是新華中學2004年9月入學的高一年級女同學}.
教師組織學生思考.討論和交流,得出結論,從而得出交集的定義;
一般地,由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集.
記作:A∩B.
讀作:A交B
其含義用符號表示為:
接著教師要求學生用Venn圖表示交集運算.
(2)練習.檢查和反饋
①設平面內直線上點的集合為,直線上點的'集合為,試用集合的運算表示的位置關系.
②學校里開運動會,設A={|是參加一百米跑的同學},B={|是參加二百米跑的同學},C={|是參加四百米跑的同學},學校規定,在上述比賽中,每個同學最多只能參加兩項比賽,請你用集合的運算說明這項規定,并解釋集合運算A∩B與A∩C的含義.
學生獨立練習,教師檢查,作個別指導.并對學生中存在的問題進行反饋和糾正.
(三)學生自主學習,閱讀理解
1.教師引導學生閱讀教材第10~11頁中有關補集的內容,并思考回答下例問題:
(1)什么叫全集?
(2)補集的含義是什么?用符號如何表示它的含義?用Venn圖又表示?
(3)已知集合.
(4)設S={|是至少有一組對邊平行的四邊形},A={|是平行四邊形},B={|是菱形},C={|是矩形},求.
在學生閱讀.思考的過程中,教師作個別指導,待學生經過閱讀和思考完后,請學生回答上述問題,并及時給予評價.
(四)歸納整理,整體認識
1.通過對集合的學習,同學對集合這種語言有什么感受?
2.并集.交集和補集這三種集合運算有什么區別?
(五)作業
1.課外思考:對于集合的基本運算,你能得出哪些運算規律?
2.請你舉出現實生活中的一個實例,并說明其并集.交集和補集的現實含義.
3.書面作業:教材第12頁習題1.1A組第7題和B組第4題.
集合的運算說課稿3
一、集合的運算
1.交集:由 的元素組成的集合,叫做集合A與B的交集,記作A∩B,即A∩B= .
2.并集:由 的元素組成的集合,叫做集合A與B的并集,記作A∪B,即A∪B= .
3.補集:集合A是集合S的子集,由 的元素組成的集合,叫做S中子集A的補集,記作 ,即 = .
二、集合的常用運算性質
1.A∩A= ,A∩ = ,A∩B=B∩A,A∪A= ,A∪ = ,A∪B=B∪A
2. = , = , .
3. , ,
4.A∪B=A A∩B=A
例1. 設全集 , 方程 有實數根 , 方程 有實數根 ,求 .
例2. 已知 , 或 .(1)若 ,求 的取值范圍;(2) 若 ,求 的取值范圍.
變式訓練1.已知集合A= B= 當=3時,求 .
變式訓練2:設集合A= B
(1)若A B 求實數a的值;(2)若A B=A,求實數a的取值范圍;
1.在解決有關集合運算題目時,關鍵是準確理解題目中符號語言的含義,善于轉化為文字語言.
2.集合的運算可以用韋恩圖幫助思考,實數集合的交、并運算可在數軸上表示,注意在運算中運用數形結合思想.
3.對于給出集合是否為空集,集合中的元素個數是否確定,都是常見的討論點,解題時要有分類討論的意識.
集合的運算說課稿4
教學類型:
探究研究型
設計思路:
通過一系列的猜想得出德.摩根律,但是這個結論僅僅是猜想,數學是一門科學,所以需要論證它的正確性,因此本節通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課.
教學過程:
一、片頭
(20秒以內)
內容:你好,現在讓我們一起來學習《集合的運算——自己探索也能發現的數學規律(第二講)》。
第 1 張PPT
12秒以內
二、正文講解
(4分20秒左右)
1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發現。”
上節課老師和大家學習了集合的運算,得出了一個有趣的規律。課后,你舉例驗證了這個規律嗎?
那么,這個規律是偶然的,還是一個恒等式呢?
第 2 張PPT
28秒以內
2.規律的驗證:
試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用
第 3 張PPT
2分10 秒以內
3.抽象概括: 通過我們的觀察和驗證,我們發現這個規律是一個恒等式。
而這個規律就是180年前著名的英國數學家德摩根發現的。
為了紀念他,我們將它稱為德摩根律。
原來我們通過自己的探索也能發現這么偉大的數學規律。
第 4 張PPT
30秒以內
4.例題應用:使用例題形式,將的德摩根定律的結論加以應用,讓學生更加熟悉集合的運算
第 5 張PPT
1分20秒以內
三、結尾
(20秒以內)
通過這在道題的解答,我們發現德摩根律為解答集合運算問題提供了更為簡便的方法。
希望你在今后的學習中,勇于探索,發現更多有趣的規律。
第 6 張PPT
10秒以內
教學反思(自我評價)
學生在學習集合時會接觸到很多的集合運算,往往學生覺得這是集合中的難點,因此本節課通過一系列的猜想,以精彩的動畫展示,讓學生在直觀的環境下輕松的學習,提高學生學習數學的興趣,并通過層層深入的講解,讓學生進一步加強對集合運算的理解和應用能力,效果非常好.
集合的運算說課稿5
一,教學目標
1,知識與技能:
(1)理解并集和交集的含義,會求兩個簡單集合的交集與并集
(2)能夠使用Venn圖表達兩個集合的運算,體會直觀圖像對抽象概念理解的作用
2,過程與方法
(1)進一步體會類比的作用
(2)進一步樹立數形結合的思想
3,情感態度與價值觀
集合作為一種數學語言,讓學生體會數學符號化表示問題的簡潔美.
二,教學重點與難點
教學重點:并集與交集的含義
教學難點:理解并集與交集的概念,符號之間的區別與聯系
三,教學過程
1,創設情境
(1)通過師生互動的形式來創設問題情境,把學生全體作為一個集合,按學科興趣劃分子集,讓他們親身感受,激起他們的學習興趣。
(2)用Venn圖表示(陰影部分)
2,探究新知
(1)通過Venn圖,類比實數的加法運算,引出并集的含義:一般地,由所有屬于集合A或集合B的元素組成的集合,稱為集合A和集合B的并集。
記作:AB,讀作:A并B,其含義用符號表示為:
(2)解剖分析:
1所有:不能認為AB是由A的所有元素和B的所有元素組成的集合,即簡單平湊,要滿足集合的互異性,相同的元素即A和B的公共元素只能算作并集中的一個元素
2或: 這一條件,包括下列三種情況:
3用Venn圖表示AB:
(3)完成教材P8的例4和例5(例4是較為簡單的不用動筆,同學直接口答即可;例5必須動筆計算的,并且還要通過數軸輔助解決,充分體現了數形結合的思想。)
(4)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?(具體畫出A與B相交的Venn圖)
(5)交集的含義:一般地,由屬于集合A和集合B的所有元素組成的集合,稱為A與B的交集,記作:AB,讀作:A交B,其含義用符號表示為
(6)解剖分析:
1且
2用Venn圖表示AB:
(7)完成教材P9的例6(口述)
(8) (運用數軸,答案為 )
3,鞏固練習
(1)教材P9的例7
(2)教材P11 #1 #2
4,小結作業:
(1)小結:1 并集和交集的含義及其符號表示
2 并集與交集的區別(符號等)
(2)作業: