我要投稿 投訴建議

《抽屜原理》優(yōu)秀教學設計

時間:2024-07-30 18:12:51 教學設計 我要投稿

《抽屜原理》優(yōu)秀教學設計

  作為一位無私奉獻的人民教師,就難以避免地要準備教學設計,借助教學設計可以提高教學效率和教學質量。那么什么樣的教學設計才是好的呢?下面是小編整理的《抽屜原理》優(yōu)秀教學設計,希望對大家有所幫助。

《抽屜原理》優(yōu)秀教學設計

《抽屜原理》優(yōu)秀教學設計1

  桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。

  教學理念:

  激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內容變?yōu)閷W生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。

  教學目標

  1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。

  3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。

  教學重難點

  重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學過程:

  一、課前游戲引入。

  師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)

  師:聽清要求 ,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

  師:開始。

  師:都坐下了嗎?

  生:坐下了。

  師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學”我說得對嗎?

  生:對!

  師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)

  二、通過操作,探究新知

  (一)探究例1

  1、研究3枝鉛筆放進2個文具盒。

  (1)要把3枝鉛筆放進2個文具盒 ,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內交流。

  (2)反饋:兩種放法:(3,0)和(2,1)。

  (3)從兩種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的.?(說得真有道理)

  (4)“總有”什么意思?(一定有)

  (5)“至少”有2枝什么意思?(不少于2枝)

  小結:在研究3枝鉛筆放進2個文具盒時,同學們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進2枝鉛筆)

  2、研究4枝鉛筆放進3個文具盒。

  (1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內交流。

  (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

  (3)從四種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)

  (4)你是怎么發(fā)現(xiàn)的?

  (5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應該要怎樣放?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)

  (6)這位同學運用了假設法來說明問題,你是假設先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)

  (7)誰能用算式來表示這位同學的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?

  (8)在探究4枝鉛筆放進3個文具盒的問題,同學們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設法”來說明理由,你覺得哪種方法更明了更簡單?

  3、類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  把7枝鉛筆放進6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進2枝鉛筆。)

  5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結論:“總有一個筆盒至少有2枝鉛筆。”

  6、小結:剛才我們分析了把鉛筆放進文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時,總有一個文具盒至少放進2枝鉛筆。

  這就是今天我們要學習的抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯(lián)系吧?鉛筆相當于我們要準備放進抽屜的物體,那么文具盒就相當于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結論“總有一個抽屜里放進了2個物體。”

  7、在我們的生活中,常常會遇到抽屜原理,你能不能舉個例子?在課前我們玩的游戲中,有沒有抽屜原理?

  過渡:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。

  (二)探究例2

  1、研究把5本書放進2個抽屜。

  (1)把5本書放進2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)

  (2)從三種情況中,我們可以得到怎樣的結論呢?(總有一個抽屜至少放進了3本書)

  (3)還可以怎樣理解這個結論?先在每個抽屜里放進2本,剩下的1本放進任何一個抽屜,這個抽屜就有3本書了。

  (4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?

  2、類推:如果把7本書放進2個抽屜中,至少有一個抽屜放進4本書。

  如果把9本書放進2個抽屜中。至少有一個抽屜放進5本書。

  如果把11本書放進3個抽屜中。至少有一個抽屜放進4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?

  3、小結:從以上的學習中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時,我們可以運用假設法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數(shù)多1。)

  4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學家。 “抽屜原理”最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。

  5、做一做:

  7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個佶舍里。為什么?

  8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?

  (先讓學生獨立思考,在小組里討論,再全班反饋)

  三、遷移與拓展

  下面我們一起來放松一下,做個小游戲。

  我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?

  四、總結全課

  這節(jié)課,你有什么收獲?

《抽屜原理》優(yōu)秀教學設計2

  【知識技能】

  1.理解最簡單的抽屜原理及抽屜原理的一般形式。

  2.引導學生采用操作的方法進行枚舉及假設法探究。

  【過程方法】

  經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。

  【情感態(tài)度價值觀】

  體會數(shù)學知識在日常生活中的廣泛應用,培養(yǎng)學生的探究意識和能力。

  【教學重、難點】

  經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  【教學過程】

一、問題引入。

  師:同學們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準備了3把椅子,請4個同學上來,誰愿來?

  1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

  2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?

  游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。

  引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。

  二、探究新知

  (一)教學例1

  1.出示題目:有4枝鉛筆,3個盒子,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?

  師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的`情況,師出示各種情況。

  板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),問題:4個人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。4支筆放進3個盒子里呢?

  引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。

  問題:

  (1)“總有”是什么意思?(一定有)

  (2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

  教師引導學生總結規(guī)律:我們把4枝筆放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結論。那么,你們能不能找到一種更為直接的方法得到這個結論呢?

  學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。

  問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)

《抽屜原理》優(yōu)秀教學設計3

  教材分析

  《抽屜原理的認識》是人教版數(shù)學六年級下冊第五章內容。在數(shù)學問題中有一類與“存在性”有關的問題。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明是通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“抽屜原理”。“抽屜原理”最先是由19世紀的德國數(shù)學家狄里克雷(Dirichlet)運用于解決數(shù)學問題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。、

  學情分析

  本節(jié)課我根據(jù)“教師是組織者、引導者和合作者”這一理念,以學生參與活動為主線,創(chuàng)建新型的教學結構。通過幾個直觀的例子,用假設法向學生介紹“抽屜原理”,學生難以理解,感覺抽象。在教學時,我結合本班實際,用學生熟悉的吸管和杯子貫穿整個課堂,讓學生通過動手操作,在活動中真正去認識、理解“抽屜原理”學生學得輕松也容易接受。

  教學目標

  1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2、通過操作發(fā)展 的類推能力,形成抽象的數(shù)學思維。

  3、通過“抽屜原理”的靈活應用,感受數(shù)學的`魅力。

  教學重點和難點

  【教學重點】

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  【教學難點】

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學內容:

  六年級數(shù)學下冊70頁、71頁例1、例2。

  教學目標:

  1、理解“抽屜原理”的一般形式。

  2、經(jīng)歷“抽屜原理”的探究過程,體會比較、推理的學習方法,會用“抽屜原理”解決簡單的的實際問題。

  4、感受數(shù)學的魅力,提高學習興趣,培養(yǎng)學生的探究精神。

  教學重點:

  經(jīng)歷“抽屜原理”探究過程,初步了解“抽屜原理”。

  教學難點:

  理解“抽屜原理”的一般規(guī)律。

  教學準備:

  相應數(shù)量的杯子、鉛筆、課件。

  教學過程:

  一、情景引入

  讓五位學生同時坐在四把椅子上,引出結論:不管怎么坐,總有一把椅子上至少坐了兩名學生。

  師:同學們,你們想知道這是為什么嗎?今天,我們一起研究一個新的有趣的數(shù)學問題。

  二、探究新知

  1、探究3根鉛筆放到2個杯子里的問題。

  師:現(xiàn)在用3根鉛筆放在2個杯子里,怎么放?有幾種放法?大家擺擺看,有什么發(fā)現(xiàn)?

  擺完后學生匯報,教師作相應的板書(3,0)(2,1),引導學生觀察理解說出:不管怎么放總有一個杯子至少有2根鉛筆。

  (1)師:依此推下去,把4根鉛筆放在3個杯子又怎么放呢?會有這種結論嗎?讓學生動手操作,做好記錄,認真觀察,看看有什么發(fā)現(xiàn)?

  (2)、學生匯報放結果,結合學具操作解釋。教師作相應記錄。

  (4,0,0) (3,1,0) (2,2,0) (2,1,1)

  (學生通過操作觀察、比較不難發(fā)現(xiàn)有與上個問題同樣結論。)

  (3)學生回答后讓學生閱讀例1中對話框:不管怎么放,總有一個杯子里至少放進2根鉛筆。

  師:“總有”是什么意思?“至少”呢?讓學生理解它們的含義。

  師:怎樣放才能總有一個杯子里鉛筆數(shù)最少?引導學生理解需要“平均放”。

  教師出示課件演示讓學生進一步理解“平均放”。

  3、探究n+1根鉛筆放進n個杯子問題

  師:那我們再往下想,6根鉛筆放在5個杯子里,你感覺會有什么結論?

  讓學生思考發(fā)現(xiàn)不管怎么放,總有一個杯子里至少有2根鉛筆。

  師:7根鉛筆放進6個杯子,你們又有什么發(fā)現(xiàn)?

  學生回答完之后,師提出:是不是只要鉛筆數(shù)比杯子數(shù)多1,總有一個杯子里至少放進2根鉛筆?讓學生進行小組合作討論匯報。

  學生匯報后引導學生用實驗驗證想法。

  師:把10根小棒放在9個杯子里呢,總有一個杯子里至少有幾根小棒?(2根)

  師:把100根小棒放在99個杯子里,會有什么結論呢?(2根)

  4、總結規(guī)律

  師:剛才我們研究的都是鉛筆數(shù)比杯子數(shù)多1,而余數(shù)也正巧是1的,如果余下鉛筆數(shù)比杯子多2、多3、多4的呢,結論又會怎樣?

  (1)探究把5根鉛筆放在3個杯子里,不管怎么放,總有一個杯子里至少有幾根鉛筆?為什么?

  a、先同桌擺一擺,再說一說。

  b、你怎么分的?

  學生匯報后,教師演示:將5根筆平均分到3個杯子里里,余下的兩根怎么辦?是把余下的兩根無論放到哪個杯子里都行嗎?怎樣保證至少?

  引導學生知道再把兩根鉛筆平均分,分別放入兩個杯子里。

  (2)探究把15根鉛筆放在4個杯子里的結論。

  (3)、引導學生總結得出結論:商加1是總有一個杯子至少個數(shù)。

《抽屜原理》優(yōu)秀教學設計4

  教學目標:

  1.知識與能力目標:

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學活動,建立數(shù)學模型,發(fā)現(xiàn)規(guī)律。滲透“建模”思想。

  2.過程與方法目標:

  經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。

  3.情感、態(tài)度與價值觀目標:

  通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。

  教學重點:

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學難點:

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學準備:

  教具:5個杯子,6根小棒;學具:每組5個杯子,6根小棒。

  教學過程:

一、游戲激趣,初步體驗。

  師:同學們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學上來各抽一張,我們來驗證一下。如果再請五位同學來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊藏著一個非常有趣的數(shù)學原理,想不想研究啊?

  二、操作探究,發(fā)現(xiàn)規(guī)律。

  (一)經(jīng)歷“抽屜原理”的探究過程,理解原理。

  1.研究小棒數(shù)比杯子數(shù)多1的情況。

  師:今天這節(jié)課我們就用小棒和杯子來研究。

  師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?

  學生分組操作,并把操作的.結果記錄下來。

  請一個小組匯報操作過程,教師在黑板上記錄。

  師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。

  師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?

  學生分組操作,并把操作的結果記錄下來。

  請一個小組代表匯報操作過程,教師在黑板上記錄。

  師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是…什么意思?“至少”又是什么意思?

  師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結果?

  師:怎樣驗證猜測的結果對不對,你又什么好方法?引導學生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結果:6÷5=1……1

  師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?

  師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結果呢?

  2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。

  師:如果把5根小棒放在3個杯子里,會有什么結果?

  引導:先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?

  師:把7根小棒放在3個杯子里,會有什么結果呢?為什么?

  3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。

  師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結果?

  小組內討論,再請同學說結果和理由。

  4、總結規(guī)律。

  師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?

  總結:把m個物體放在n個抽屜里(m﹥n),總有一個抽屜至少有“商+1”個物體。

  5、介紹抽屜原理。

  “抽屜原理”又稱“鴿巢原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。

  三、應用“抽屜原理”,感受數(shù)學的魅力。

  1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?為什么?

  先思考:這里是把什么看做物體?什么看做抽屜?再說結果和理由。

  2、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?

  3、向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?

  (1)六年級里至少有兩人的生日是同一天。

  (2)六(2)班中至少有5人是同一個月出生的。

  4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?

  5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學的抽屜原理來解釋嗎?

  四、全課小結。

  說一說:今天這節(jié)課,我們又學習了什么新知識?(師生共同對本節(jié)課的內容進行小結)

  五、布置作業(yè)。

  課本73頁練習十二第2、4題。

  六、板書設計。

  數(shù)學廣角——抽屜原理

《抽屜原理》優(yōu)秀教學設計5

  教材簡析:

  《抽屜原理》是義務教育課程標準實驗教科書數(shù)學六年級下冊第五單元數(shù)學廣角的教學內容。這部分教材通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”,使學生在理解“抽屜原理”這一數(shù)學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決。“抽屜原理”在生活中運用廣泛,學生在生活中常常能遇到實例,但并不能有意識地從數(shù)學的角度來理解和運用“抽屜原理”。教學中應有意識地讓學生理解“抽屜原理”的“一般化模型”。

  學情分析:

  六年級學生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經(jīng)驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。激趣是新課導入的抓手,喜歡和好奇心比什么都重要,游戲,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的'探究性學習把抽屜原理較為抽象難懂的內容變?yōu)閷W生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。

  教學目標:

  1、使學生初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。

  2、使學生經(jīng)歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發(fā)現(xiàn)、歸納、總結原理。

  3、使學生通過“抽屜原理”的靈活應用感受數(shù)學的魅力;提高解決問題的能力和興趣。

  教學重點:

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學難點:

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學過程:

  一、課前游戲,導入新課。

  游戲請5名同學到前面來,老師這有4張凳子,老師喊123開始,要求每位同學都必須坐在凳子上,引導:5位同學坐在4張椅子上,不管怎么坐,總有一把凳子上至少坐兩個同學。

  我們剛才做了個小游戲,但小游戲蘊含著一個有趣的數(shù)學原理。今天我們就來研究這個有趣的數(shù)學原理——抽屜原理。

  [設計意圖:把抽象的數(shù)學知識與生活中的游戲有機結合起來,使教學從學生熟悉和喜愛的游戲引入,讓學生在已有生活經(jīng)驗的基礎上初步感知抽象的“抽屜原理”,提高學生的學習興趣。]

  二、通過操作,探究新知

  (一)活動一

  1、出示題目:把4根小棒,放在3個杯子里,怎么放?有幾種不同的放法?

  (板書:小棒4杯子3)

  提出要求:把所有的擺法都擺出來,看看你會有什么發(fā)現(xiàn)?

  (1)同桌之間互相合作,動手擺,把各種情況記錄下來。

  (2)指名一位同學展示不同擺法,教師板書。(4,0,0)(3,1,0)(2,2,0)(2,1,1),(3)引導學生觀察發(fā)現(xiàn):不管怎么放,總有一個杯子里至少有2根小棒。(板書:總有一個杯子里至少有)

  (4)師生共同理解“總有”“至少”有2枝什么意思?

  (5)明確:剛才同學們把所有擺法一一列舉出來,得到了這樣的結論,我們稱之為“枚舉法”。

  [設計意圖:學生通過自己動手操作,在實驗中、合作中、討論中發(fā)現(xiàn)規(guī)律,分析問題的形成,把動腦思考與動手操作相結合,獨立思考與小組合作相結合。讓同學之間互相幫助,相互提高,讓問題在學生的探究中得到解決。]

  2、要把6根小棒放進5杯子里,你感覺會有什么結果呢?

  (1)啟發(fā)學生猜想結果

  把6根小棒放入五個杯子里,你感覺一下,不要動手擺,你感覺一下會有什么樣的結論?

  (2)引導學生選擇合適的方法

  提出要求:想一個快速而又簡單的方法,只擺一種情況,你就可以得到這個結論?

  (3)學生嘗試操作驗證。

  (4)全班交流,操作演示。

  學生活動后組織交流:先每個杯子擺一根,每個杯子放1跟,5個杯子,就已經(jīng)放了5根,還有1根不管怎么放,總有一個杯子至少有兩根小棒

  預設:如遇到每個杯子擺兩根,有的杯子空的,這樣有說服力嗎?有的杯子還空著,要先把每個杯子都裝上小棒才行。

  (5)明確結論:把6根小棒放進5個杯子里,不管怎么放,總有一個杯子里至少有2枝小棒。

  3、課件出示:

  把100根小棒放進99個杯子呢?

  談話:要不要也準備100根小棒和99根杯子呢?可以怎么辦?

  引導用假設法進行思考:假設每個杯子放1跟,99個杯子,就已經(jīng)放了99根,還有1根不管怎么放,總有一個杯子至少有2根小棒。

  這也是數(shù)學中一種很重要的方法“假設法”。

  引導學生觀察小棒數(shù)和杯子數(shù),你有什么發(fā)現(xiàn)?

  明確:這里的小棒數(shù)都比杯子數(shù)多1,當小棒數(shù)比杯子數(shù)多1時,總有一個杯子至少放了兩根小棒。

  [設計意圖:注意鼓勵學生運用已有的知識對新學習的內容進行聯(lián)想和猜測,再通過實驗和推理驗證,培養(yǎng)學生良好的學習和思考習慣。在猜測的基礎上進行實驗和推理,從“枚舉法”到“假設法”,使學生受到研究方法和思維方式的訓練,發(fā)展和提高自主學習的能力。]

  (二)活動二

  談話:接下來,我們把數(shù)學書當做物體數(shù)放入抽屜里,看看又有什么發(fā)現(xiàn)?

  課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

  板書:

書抽屜總有一個抽屜放入算式

  5235÷2=2……1

【《抽屜原理》優(yōu)秀教學設計】相關文章:

抽屜原理教學設計優(yōu)秀10-09

《抽屜原理》教學設計優(yōu)秀04-24

抽屜原理教學設計06-12

(優(yōu)秀)阿基米德原理教學設計01-16

阿基米德原理教學設計06-02

最新原電池工作原理教學設計04-29

(精品)阿基米德原理教學設計6篇11-17

交通規(guī)劃原理設計心得05-13

優(yōu)秀教學設計04-13

優(yōu)秀的教學設計07-06

真人一级一级97一片a毛片√91,91精品丝袜无码人妻一区,亚国产成人精品久久久,亚洲色成人一区二区三区
亚洲欧美国产日韩中文字幕 | 日本在亚洲A在线观看 | 最新精品视频精久久综合 | 伊人久久大香线蕉AV色婷婷色 | 日韩国产欧美一级天堂 | 中文字幕巨乱亚洲 |