我要投稿 投訴建議

《三角形內角和》的教學設計

時間:2024-10-27 15:51:17 教學設計 我要投稿

《三角形內角和》的教學設計

  作為一名無私奉獻的老師,就不得不需要編寫教學設計,教學設計把教學各要素看成一個系統,分析教學問題和需求,確立解決的程序綱要,使教學效果最優化。教學設計應該怎么寫呢?以下是小編整理的《三角形內角和》的教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。

《三角形內角和》的教學設計

《三角形內角和》的教學設計1

  知識與技能

  1、通過小組合作,運用直觀操作的方法,探索并發現三角形內角和等于180。能應用三角形內角和的性質解決一些簡單問題。

  2、經歷親自動手實踐、探索三角形內角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數學思想方法,提高動手操作能力和數學思考能力。

  情感態度與價值觀

  3、使學生在數學活動中獲得成功的體驗,感受探索數學規律的樂趣。培養學生的創新意識、探索精神和實踐能力,在學生親自動手實踐和歸納中,感受理性的美。

  教學重點:

  1、探索和發現三角形三個內角和的度數和等于180o。

  2、已知三角形的兩個角的度數,會求出第三個角的度數。

  教學難點:

  已知三角形的兩個角的度數,會求出第三個角的`度數。

  方法與過程

  教法:主動探究法、實驗操作法。

  學法:小組合作交流法

  教學準備:小黑板、學生、老師準備幾個形狀不同的三角形、量角器。

  教學課時:1課時

  教學過程

  一、預習檢查

  說一說在預習課中操作的感受,應注意哪些問題,三角形的內角和等于多少度? 組內交流訂正。

  二、情景導入呈現目標

  故事引入。一天,大三角形對小三角形說:“我的個頭大,所以我的內角和一定比你的大!毙∪切魏懿桓市牡卣f:“是這樣的嗎?”揭示課題,出示目標。產生質疑,引入新課。

  三、探究新知 

  自主學習

  1、活動一、比一比2、活動二、量一量

  (1)什么是內角?

 。2)如何得到一個三角形的內角和?

 。3)小組活動,每組同學分別畫出大小,形狀不同的若干個三角形。分別量出三個內角的度數,并求出它們的和。

  (4)填寫小組活動記錄表。發現大小,形狀不同的每個三角形,三個內角的度數和都接近度。

  3、說一說,做一做。

 。1)我們把三個角撕下來,再拼在一起,看一看會是怎樣的。

 。2)把三個角折疊在一起,,三個角在一條直線上。從而得到三角形三個內角和等于()度。

  四、當堂訓練(小黑板出示內容)

  1、三角形的內角和是()°,一個等腰三角形,它的一個底角是26°,它的頂角是()。

  2、長5厘米,8厘米,()厘米的三根小棒不能圍成一個三角形。

  3、三角形具有()性。

  4、一個三角形中有一個角是45°,另一個角是它的2倍,第三個角是(),這是一個()三角形。

  5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。

  6、交流學案第三題。 先獨立做,最后組內交流。

  五、點撥升華

  任意三角形三個角的度數和等于180度。獨立思索小組交流總結方法教師點撥。

  六、課堂總結

  通過這節課的學習,你有什么新的收獲或者還有什么疑問?先小組內說一說,最后班上交流。

  七、拓展提高

  媽媽給淘氣買了一個等腰三角形的風箏。它的頂角是40°,它的一底角是多少? 先獨立做,最后組內交流。

  板書設計:

  三角形的內角和

  測量三個角的度數求和:結論:

  教學反思:三角形內角和等于180°,對于大多數同學來說并不是新知識。因為在此之前學生已經運用過這一知識。因此,我覺得這一堂課的重點不是讓學生記住這一結論,也不是怎樣運用它去解結問題。而是讓學生證明這一結論,即要讓學生親歷探索過程并在探索中驗證。在教學中,通過豐富的材料讓學生動手操作,通過量、撕拼、折拼等實驗活動,讓學生得到的不僅僅是三角形內角和的知識,更重要的是學到了怎樣由已知知識探索未知的思維方式與方法,激發了他們主動探索知識的欲望。通過多種實驗進行操作驗證也讓學生明白了只要善于思考,善于動手就能找到解決問題的方法。

  當然,在教學中也還有一些不順利的地方,比如一些動手能力差的學生未能及時跟進,對于方法不對的學生未能及時指導和幫助等。但是本堂課采用這樣的方式展開教學是學生喜歡的也是有成效的。

《三角形內角和》的教學設計2

  【教學資料】

  《義務教育課程標準實驗教科書數學(人教版)》四年級下冊第五單元第85頁

  【教學目標】

  1、透過"量一量","算一算","拼一拼","折一折"的方法,讓學生推理歸納出三角形內角和是180°,并能應用這一知識解決一些簡單問題。

  2、透過把三角形的內角和轉化為平角進行探究實驗,滲透"轉化"的數學思想、

  3、透過數學活動使學生獲得成功的體驗,增強自信心、培養學生的創新意識,探索精神和實踐潛力、

  【教學重難點】

  理解并掌握三角形的內角和是180度

  【教具學具準備】

  多媒體課件、各類三角形、長方形、正方形、量角器、剪刀、固體膠、活動記錄表等。

  【教學流程】

 。ㄒ唬﹦撛O情境,激發興趣

  此刻正是春暖花開,萬物復蘇的季節。在這完美的日子里,我們相聚在那里,劉老師十分高興認識大家,你看把蝴蝶也引來了。(課件)

  師:請大家仔細觀察,它把這條繩子圍成了什么三角形?

  (課件)

  師:請大家仔細想一想,這三個三角形在圍的過程中什么變了?什么沒變?

  生答

  師:這節課我們一起來研究三角形的內角和。(板書:三角形的內角和)

  【評析:以問題情境為出發點,既豐富了學生的感官認識,又激發了學生的學習了熱情。】

  (二)動手操作,探索新知

  1、揭示“內角”和“內角和”的概念

 。1)“內角”的概念

 。◣熓帜靡粋三角形)這個三角形的內角在哪?誰來指給大家看。一個三角形有幾個內角?

  每人從學具筐中任選一個三角形,指出它的內角。

 。2)“內角和”的概念

  師:大家明白了什么是三角形的內角,那什么叫“內角和”呢?

  師小結:三角形的內角和就是三個內角的度數之和。

  2、猜測內角和

  (1)師拿一個銳角三角形問:大家猜一猜這個銳角三角形的內角和是多少度?有不同想法嗎?

  (2)直角三角形與鈍角三角形同上。

  (3)師:看來大家都認為三角形的內角和是180o,但這僅僅是我們的一種猜測,有了猜測就能夠下結論了嗎?我們還需要進一步的驗證.

  3、動手驗證,匯報交流

 。ǎ保┙榻B學具筐

  劉老師為每個小組準備了一個學具筐,里面有不同的學習了材料,或許這些材料會對你有所啟發,幫忙你想出好辦法。每人此刻都認真的想一想,你打算怎樣來驗證三角形的內角和不是180o呢?

 。ǎ玻┥毩⑺伎,動手操作

  (3)組內交流

  經過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內交流各自的驗證方法。

 。4)全班匯報交流

  師:來吧孩子們,該到全班交流的.時候了.誰愿意先把自己的方法與大家一齊分享。

 。、測量法

  活動記錄表

  三角形的形狀每個內角的度數三個內角和

  ∠1∠2∠3

  學生匯報測量結果。

  師:剛才大家都認為三角形的內角和是180度,但量的結果有的是180度,有的不是180度,這是怎樣原因呢?

  生發表觀點

  師小結:看來采用測量的方法會有誤差,學習了數學要用這種嚴謹的態度來對待,咱們再看看別的方法。

 。、撕拼法

  請用撕拼方法的學生上臺展示撕拼的過程。

  師:你是怎樣想到把三角形撕下來拼成一個平角來驗證的呢?

  師評價:你把本不在一齊的三個角,透過移動位置,把它轉化成一個平角來驗證,還用了轉化的思想,你真了不起。

  師:透過他們三個人的驗證,你得到了什么結論?

 。、其他方法

  師:條條大路通羅馬,還有別的驗證方法嗎?

  如果學生出現把兩個完全相同的直角三角形拼成一個長方形來驗證。

  師追問:這種方法真的很簡單,但它只能證明哪一類的三角形呢?

  【評析:《標準》指出:“教師應激發學生的用心性,向學生帶給充分從事數學活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”在教學設計中劉老師注意體現這一理念,允許學生根據已有的知識經驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內角和是180°這個圖形性質。在探索活動中,使學生學會與他人合作,同時也使學生學到了怎樣由已知探索未知的思維方式與方法,培養他們主動探索的精神,讓學生在活動中學習了,在活動中發展!

  4、科學驗證方法

  師:不同的方法,同樣的精彩,大家發現了嗎?無論是撕一撕、折一折、還是拼一拼,這些方法都有異曲同工之妙,那就是你們都用了轉化的策略。我發現你們都有數學家的頭腦,明白嗎?數學家在證明這一猜想時,也用了轉化的思想,一起來看(看課件)

  【評析:一方面使學生為自己猜想的結論能被證明而產生滿足感;另一方面使學生體會到數學是嚴謹的,從小就就應讓學生養成嚴謹、認真、實事求是的學習了態度!

 。ㄈ┱n外拓展,積淀文化

  師:明白三角形內角和的秘密最早是由誰發現的嗎?(放課件)

  師:善于數學發現和思考使帕斯卡走上了成功的道路。這節課才10歲的我們也用自己的智慧發現了帕斯卡12歲時的數學發現,我們同樣了不起,劉老師為大家感到驕傲。

  【評析:適當的引入課外知識,它既能夠激發學生的學習了興趣,又有機的滲透了向帕斯卡學習了,做一個善于思考、善于發現的孩子,對學生的情感、態度、價值觀的構成與發展能起到了潛移默化的作用!

  (四)應用新知,解決問題

  明白了這個結論能夠幫忙我們解決那些問題呢?

  1、把兩個小三角形拼成一個大三角形,大三角形的內角和是多少度?為什么?

  師:大三角形的內角是哪些?指出來

  師:當把兩個三角形拼在一齊時,消失了兩個內角,正好是180°,所以大三角形的內角和還是180度,如果把三角形分成兩個小三角形呢?

  師小結:三角形無論大小,內角和都是180°。

  【評析:透過課件動態演示兩個三角形分與合的過程,讓學生進一步理解三角形內角和等于180度這個結論,使學生認識到三角形的內角和不因三角形的大小而改變。】

  2、想一想,做一做

  在一個三角形ABC中,已知A45°,B85o,求с的度數。

  在一個直角三角形中,已知с52o,求Α的度數。

  爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?

  【評析:將三角形內角和知識與三角形特征有機結合起來,使學生綜合運用內角和知識和直角三角形、等腰三角形等圖形特征求三角形內角的度數!

  3、思考:

  你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?

  【評析:將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯系。】

  (五)全課小結,完善新知

  1、學生談收獲

  2、師小結

  這天我們收獲的不僅僅僅是知識上的,還有情感上的,思想方法上的,還認識了一位了不起的科學家帕斯卡,因為他的好奇與不滿足讓我們記住了他。相信在座的每一位只要你擁有善于發現的眼睛,勤于思考的大腦,勇于實踐的雙手,將來某一天你也會像他一樣偉大。

  【評析:這樣用談話的方式進行總結,不僅僅總結了所學知識技能,還體現了學法的指導,增強了情感體驗。】

  【總評】整節課劉老師透過巧妙的設計,讓學生經歷了觀察、發現、猜測、驗證、歸納、概括等數學活動,切實體現了新課程的核心理念“以學生為本,以學生的發展為本”。具體體此刻以下幾個方面:

  1、精心設計學習了活動,讓每一個學生經歷知識構成的過程。劉老師為學生帶給了豐富的結構化的學習了材料,有各類的三角形、相同的三角形等,促使學生人人動手、人人思考,引導學生在獨立思考的基礎上進行合作與交流。在這一過程中發展學生的動手操作潛力、推理歸納潛力,實現學生對知識的主動建構。

  2、立足長遠,注重長效,不僅僅關注知識和潛力目標的落實,更注重數學思想方法的滲透。在驗證三角形內角和是180度的過程中,教師有意識地引導學生認識到撕拼的驗證方法其實是把三角形的內角和轉化成了平角,使學生對“轉化”的數學思想有所感悟;在對測量的結果出現不同答案的交流過程中,使學生認識到測量時會出現誤差,從而培養學生嚴謹的、科學的學習了態度和探究精神。

  3、遵循教材,不唯教材。本節課上,劉老師延伸了教材,介紹了科學驗證三角形內角和的方法以及這一結論的發現者帕斯卡的故事,拓寬了學生的知識面,把學生的學習了置于更廣闊的數學文化背景中,激起了學生對數學的強烈興趣,激發了學生積極向上的學習了情感。

  整節課的學習了資料,突出了數學學科的實質,抓住了數學的本質,使學生在動手“做”數學的過程中尋求成功,在成功中享受快樂,在快樂中不斷超越,在超越中體驗成長、

《三角形內角和》的教學設計3

  教學目標:

  1、通過測量一量、拼一拼、折一折三個活動,探索和發現三角形三個內角的度數和等于180°。

  2、已知三角形兩個角的度數,會求出第三個角的度數。

  3、經歷三角形內角和的研究方法,感受數學研究方法。

  教學重點:

  1、探索和發現三角形三個內角的度數和等于180°。

  2、已知三角形兩個角的度數,會求出第三個角的度數。

  教學難點:掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數學思想探究三角形內角和。

  教學用具:表格、課件。

  學具準備:各種三角形、剪刀、量角器。

  一、創設情境揭示課題。

  1、一天兩個三角形發生了爭執,他們請你們來評評理。大三角形說:“我的個頭大,所以我的內角和一定比你大。”小三角形很不甘心地說:“我有一個鈍角,我的內角和一定比你大!。誰說得有道理呢?今天讓我們來做一回裁判吧。

  生1:大三角形大(個子大)

  生2:小三角形大(有鈍角)

  (教師不做判斷,讓學生帶著問題進入新課)

  2、什么是三角形的內角和?(板書:內角和)

  講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數加起來就是三角形的內角和。

  二、自主探究,合作交流。

  (一)提出問題:

  1、你認為誰說得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個三角形的內角和呢?

  生1:用量角器量一量三個內角各是多少度,把它們加起來,再比較。

  生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

  生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

  (二)探索與發現

  活動一:量一量

 。1)①了解活動要求:(屏幕顯示)

  A、在練習本上畫一個三角形,量一量三角形三個內角的度數并標注。(測量時要認真,力求準確)

  B、把測量結果記錄在表格中,并計算三角形內角和。

  C、討論:從剛才的測量和計算結果中,你發現了什么?

 。ㄒ龑仡櫥顒右螅

  ②小組合作。

 、蹍R報交流。

  你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發現了什么?

 。ㄒ龑W生發現每個三角形的三個內角和都在180°,左右。)

 。2)提出猜想

  剛才我們通過測量和計算發現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)

  活動二:拼一拼,驗證猜想

  這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

  引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?

  (1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是180°)。

 。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的'結論呢?

  (3)分組匯報,討論質疑

 。4)課件演示,驗證結果

  活動三:折一折

  師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

 。ò讶切蔚慕1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于180°,)。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

  提問:還有沒有其它的方法?

  3、回顧兩種方法,歸納總結,得出結論。

 。1)引導學生得出結論。

  孩子們,三角形內角和到底等于多少度呢?”

  學生答:“180°!”

 。2)總結方法,齊讀結論

  我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們為自己的成功鼓掌!齊讀結論。(板書:得到結論)

 。3)解釋測量誤差

  為什么我們剛才通過測量,計算出來的三角形內角和不是180°,呢?

  那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于180°

 。ㄈ┗仡檰栴}:

  現在你知道這兩個三角形誰說得對了嗎?(都不對。

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內角和等于1800180°。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數學書28頁第3題

  ∠A=180°-90°-30°

  2、練一練:數學書29頁第一題(生獨立解決)

  ∠A=180°-75°-28°

  3、小法官:數學書29頁第二題

  四、回顧課堂,滲透數學方法。

  1、總結:猜想—驗證—歸納—應用的數學方法。

  2、介紹:三角形內角和等于180度這個結論的由來;數學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動:探索——多邊形內角和

  板書設計:

  探索與發現(一)

  三角形內角和等于180°

《三角形內角和》的教學設計4

  學習目標:

  1.通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的和等于180°。

  2.知道三角形兩個角的度數,能求出第三個角的度數。 3.發展學生動手操作、觀察比較和抽象概括的能力。體驗數學活動的探索樂趣,體會研究數學問題的思想方法。

  4.能應用三角形內角和的性質解決一些簡單的問題。

  教具、學具準備:

  課件、學生準備直角三角形、銳角三角形和鈍角三角形各一個,并分別測量出每個內角的角度,標在圖中;一副三角板。

  教具、學具準備:課件、學生準備直角三角形、銳角三角形和鈍角三角形各一個、一副三角板、磁鐵若干。

  教學過程:

  一、談話導入

  猜謎語:形狀似座山,穩定性能堅

  三竿首尾連,學問不簡單

  (打一幾何圖形)師:最近我們一直在研究關于三角形的知識,誰能給大家介紹一下?(學生講學過的三角形知識。)

  師:就這么簡單的一個三角形我們就得出了那么多的知識,你們

  說數學知識神氣不神奇?

  今天我們還要繼續研究三角形的新知識。

  二、創設情境,引出課題,以疑激思

  師:什么是三角形的內角?三角形有幾個內角?生:就是三角形內的三個角。每個三角形都有三個內角。師:這個同學說得很好,三條線段在圍成三角形后,在三角形內形成了三個角(課件閃爍三個角的弧線),我們把三角形內的這三個角,分別叫做三角形的內角。

  師:有兩個三角形為了一件事正在爭論,我們來幫幫他們。(播放課件)

  師:同學們,請你們給評評理:是這樣嗎?生1:我認為是這樣的,因為大三角形大,它的三個內角的和就大。

  生2:我不同意,我認為兩個三角形的三個內角和的度數都是一樣的。

  生3:當然是大三角形的內角和大了。

  生4:我同意第二個同學的意見,兩個三角形的內角和一樣大。師:現在出現了兩種不同的意見,有的同學認為大三角形的內角和大,還有部分同學認為兩個三角形的內角和的度數都是一樣的。那么到底誰說得對呢?這節課我們就一起來研究這個問題。 (板書課題:

  三角形的內角和)

  三、動手操作,探究問題,以動啟思

  1、師拿出兩個三角板,問:它們是什么三角形?生:直角三角形。

  師:請大家拿出自己的兩個三角尺,在小組內說說每一個三角尺上三個角的度數,并求出這兩個直角三角形的內角和。

  (學生們能夠很快求出每塊三角尺的3個角的和都是180°)師:其他三角形的內角和也是180°嗎?生A:其他三角形的內角和也是180°生B:其他三角形的內角和不是180°生C:不一定

  2、小組合作探究:

  師:同學們能通過動手操作,想辦法來驗證自己的猜想嗎?請同學們先獨立思考想一想,再在小組內把你的想法與同伴進行交流,然后選用一種方法進行驗證。看誰最先發現其中的“奧秘”;看誰能爭取到向大家作“實驗成功的報告”。

  (1)、小組合作

  ,討論驗證方法(2)匯報驗證方法、結果

  師:誰愿意給大家介紹你們小組是用什么方法來驗證的?結果怎

  樣?

  方法一:

  生A:我們小組是用剪拼的方法,將三角形的三個角撕下來,拼成一個平角,得到三角形的內角和是180度。

  師:上來展示給大家瞧一瞧。你們看這位同學多細心呀,為了方便、不混淆,在剪之前,他先給3個角標上了符號。

  師:現在請同學們看屏幕,我們在電腦里把剛才剪拼的過程重播一遍。你們看成功了,3個角拼成了一個平角,剛才剪拼的是一個銳角三角形,那還有直角三角形、鈍角三角形呢?請同學們進行剪拼,看是否能拼成一個平角。(學生操作)

  生:不管什么三角形三個角都能拼成一個平角。

  師:剛才這種剪拼的方法可以不用再一個角一個角來量,就能證明三角形的內角和是180°,你們覺得這種方法好不好?真會動腦筋,不用工具也行,那我們把掌聲送給剛才這個小組。

  方法二:

  生B:我們小組是用折的方法,同樣得到三角形的內角和是180度。

  師:請這位同學折來給大家看看。

  生:3個角折成了一個平角。

  師:真是個手巧的孩子。他剛才折的是一個銳角三角形,你們小組還有折其他三角形的嗎?(匯報其它三角形折的情況)

  師:說得真清楚。

  方法三:

  學生C:測量角的度數,再加起來。(填表)

  師:這位同學測量的是銳角(鈍角)三角形,下面就請同學們另選一個三角形求出它的內角和。(匯報:填寫結果)

  問:你們發現了什么?

  小結:通過測量我們發現每個三角形的三個內角和都在180度左右。

  師:三角形的內角和就是180度,只是因為我們在測量時會出現一些誤差,所以測量出的結果不是很準確。

  3、小結:

  師:剛才同學們用量、拼、折等方法證明了無論是什么樣的三角形內角和都是1800,(板書:是180°)現在讓我們用自豪的、肯定的語氣讀出我們的發現:“三角形的內角和是1800”。

  (出示大小不等的三角形判斷內角和,判斷前面兩個三角形的對話,得出大三角形的說法是不對的'。)

  四、自主練習,解決問題:

  師:學會了知識,我們就要懂得去運用。下面,我們就根據三角形內角和的知識來解決一些相關的數學問題。(課件)

  1、第一關:下面每組中哪三個角能圍成一個三角形?(1)70。

  60。

  30。

  90。

  (2)42。

  54。

  58。

  80。

  2、第二關:廬山真面目:求三角形中一個未知角的度數。

  3、第三關:解決生活實際問題。

  (1)爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是70°,它的頂角是多少度?

  (2)交通警示牌“讓”為等邊三角形,求其中一個角的度數。

  4、第四關:變變變(拓展練習)

  利用三角形內角和是180°,求出下面四邊形、六邊形的內角和?(課件)

  師:小組的同學討論一下,看誰能找到最佳方法。學生匯報,在圖中畫上虛線,教師課件演示。

  五、課堂總結

  帕斯卡法是國著名的數學家、物理學家、哲學家、科學家,他12歲發現“任何三角形的三個內角和是1800!

  帕斯卡小的時候身體不太強壯,而父親又認為數學對小孩子有害

  且很傷腦筋,所以不敢讓他接觸到數學。在十二歲的時候,偶然看到父親在讀幾何書。他好奇的問幾何學是什么?父親為了不想讓他知道太多,只講幾何學的用處就是教人畫圖時能作出正確又美觀的圖。父親很小心的把自己的數學書都收藏好,怕被帕斯卡擅自翻動?墒菂s引起了巴斯卡的興趣,他根據父親講的一些簡單的幾何知識,自己獨立研究起來。當他把發現:“任何三角形的三個內角和是一百八十度”的結果告訴他父親時,父親是驚喜交集,竟然哭了起來。父親于是搬出了歐幾里得的“幾何原理”給巴斯卡看。巴斯卡才開始接觸到數學書籍。

  帕斯卡12歲發現此結論,我們同學10歲就發現了。所以只要善于用眼睛觀察,動腦思考,相信未來的數學家、物理學家、科學家就在你們中間!

《三角形內角和》的教學設計5

  【教材分析】

  《三角形內角和》是北師大版《數學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握“三角形的內角和是180度”這一規律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發現三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個內角的度數,求出第三個角的度數。

  【學生分析】

  經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發表自己的見解,對數學產生了濃厚的興趣。1.知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

  【學習目標】

  知識目標:掌握三角形內角和是180度這一規律,并能實際應用。

  能力目標: 培養學生主動探索、動手操作的能力。培養學生收集、整理、歸納信息的能力。使學生養成良好的合作習慣。

  情感目標: 讓學生體會幾何圖形內在的結構美。

  【教學過程】

  一、 情景激趣,質疑猜想。

  播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發了一場激烈的爭吵。

  鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小!敝苯侨切握f:“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的!

  師:想一想,什么是三角形的三個內角的和。

  生:三角形的三個內角的度數和。

  師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

  學生進行猜想,自由發言。

 。ㄔO計意圖:教師借助多媒體技術創設問題情境,架起數學學習與現實生活,抽象數學與具體問題之間的橋梁,激發了學生的學習興趣。鼓勵學生主動質疑猜想是培養學生學會學習的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是 180°,你能設法驗證這個猜想嗎?

  生1:能。我量出三角形的.三個內角和度數,加起來是否接近180°(量的時候可能會有些誤差)。

  生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。

  生3:我把三角形的三個角撕下來,拼一拼是否180°。

  生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。

  ……

  師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧!(學生把三角形的三個內角分別標上∠1、∠2、∠3,以免在剪拼時把內角搞混了。)

  學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。

 。ㄔO計意圖:驗證猜想為學生提供了“做數學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數學知識的產生發展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創新能力的發展。)

  三、交流評價,歸納結論。

  學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。

  實驗報告單

  實驗名稱

  三角形內角和

  實驗目的

  探究三角形內角和是多少度。

  實驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發現

  我的表現

  自評

  互評

  學生在展示過程中,充分交流和討論實驗中各自使用的方法和發現,教師要對學生的閃光點及時進行表揚和鼓勵。

  師生共同歸納,得出結論:

  三角形內角和等于180°

 。ㄔO計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發現的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習,鞏固創新。

  ①課件出示:

  師:這個三角形是什么三角形?知道幾個內角的度數?

  生:直角三角形,知道一個角是30°,還有一個角是90°!螦=90°-30°=60°。

  師:根據今天所學的知識,誰能求出A的度數?大家自己試一試。

  學生做完后反饋講評時讓學生說說自己的方法。

  生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

 、趯W生完成完成P29的第一題。

  引導學生按照前面的方法獨立完成,教師巡視,集體訂正。

 、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。

  同桌同學互相說一說。(答案不唯一)

 、苄〗M操作探究活動。

  讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

  方 法

  四邊形內角和

  用量角器量出每個內角的度數,并相加。

  把四邊形四個角剪下來,拼在一起。

  把四邊形分為兩個三角形。

  填表后讓學生想一想、互相說一說,四邊形內角和是多少度?

 。ㄔO計意圖:引導學生將探究學習活動中所獲得的結論經驗和方法運用于探索解決簡單的實際問題。組織學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養動手能力、實踐能力和創新思維。)

《三角形內角和》的教學設計6

  教學目標:

  1、通過測量,撕拼,折疊等方法。探索和發現三角形三個內角和的度數等于180°。

  2、引導學生動手實驗,經歷知識的生長過程培養學生的探索意識和動手能力,初步感受數學研究方法。

  3、能運用三角形內角和知識解決一些簡單的問題。

  教學重點:

  探索和發現“三角形內角和是180°”。

  教學難點:

  驗證“三角形內角和是180°,以及對這一知識的靈活運用!

  教具準備:

  三角形,多媒體課中。

  教學過程設計:

  一、創設情境:故事引入,森林王國里住著平面圖形和立體圖形兩大家族,一天平面圖形的三角形家庭傳出一片吵鬧聲,大三角形與小三角形在爭論:聽大三角形說:“我的內角和比你大”,小三角形不服氣,可又不知如何反駁,同學們,你們知道到底誰的內角和大嗎?

  二、探究新知:

 。ㄒ唬、量一量:四人一小組,分別測量本組準備的'三角形的內角,并求出和。

  你們發現三角形的內角和是多少?匯報,提出疑問,三角形的內角和是不是剛好等于180°

  (二)、拼一拼

  引導學生獨立完成,撕下二個角與第三個角拼在在一起,發現了什么?

  引導學生得出:三角形內角和等于180°

 。ㄈ┱垡徽

  引導學生同桌互相幫助完成,發現三個角形的三個內角折在一起是平角。

  回答大小三角形的爭論:大三角形與小三角形的內角形誰大?并說出理由。

  三、鞏固拓展

  1、填一填

  ①直角形三角形的兩個銳角和是()度。

 、谥苯侨切蔚囊粋銳角是45°,另一個銳角是()度。

 、垅g角三角形的兩上內角分別是20°,60°;則第三個角是()

  2、火眼金晴

  ①鈍角三角形的兩個鈍角和大于90°()。

 、谥苯侨切蔚膬蓚銳角之和正好等于90°()。

  ③淘氣畫了一個三個角分別是50°,70°,50°的三角形()

 、軆蓚銳角是60°的三角形是等邊三角形()

 、蓍L方形的內角和等于360°()。

  3、猜一猜:四邊形的內角和是多少度?

  五邊形的內角和是多少度?

  四、小結,今天學習了什么?你有什么收獲?

《三角形內角和》的教學設計7

  教學內容:

  北師版小學數學四年級下冊《探索與發現(一)—三角形內角和》

  教材分析:

  《三角形內角和》是北師大版小學數學四年級下冊第二單元第三節的內容,是在學生認識了直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形的特點的基礎上進一步探究三角形有關性質中的三個內角和的性質,是“空間與圖形”領域的重要內容之一。教材在呈現教學內容時,不但重視知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間。三角形的內角和的性質沒有直接給出,而是提供了豐富多彩的動手實踐的素材,讓學生通過探索、實驗、討論、交流而獲得,從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數學經驗,同時發展空間觀念和推理能力,不斷提高自己的思維水平。

  學情分析:

  本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經具備一定的關于三角形的認識的直接經驗,也已具備了一些相應的三角形知識,這為感受、理解、抽象“三角形的內角和”的性質,打下了堅實的基礎。同時,通過近四年的數學學習,學生已初步掌握了一些學習數學的基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。能在小組長帶領下,圍繞數學問題開展初步的討論活動,能比較清楚的表達自己的意見,認真傾聽他人的發言,具備了初步的數學交流能力。

  教學目標:

  1、讓學生經歷“猜想、驗證、歸納、應用”等知識形成的全過程,探索并發現“三角形內角和等于1800,”,并能應用規律解決一些實際問題。

  2、在探索過程中培養學生的動手實踐能力、協作能力及創新意識和探究精神,發展學生的空間思維能力,同時使學生養成獨立思考的習慣。

  3、在活動中,讓學生體驗主動探究數學規律的樂趣,體驗學數學的價值,激發學生學習數學的熱情。

  教學重點:

  讓學生經歷“猜想、驗證、歸納、應用”等知識形成的全過程,探索并發現三角形內角和等于1800,,并能應用規律解決一些實際問題。

  教學難點:

  掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數學思想探究三角形內角和。

  教學用具:

  表格、課件。

  學具準備:

  各種三角形、剪刀、量角器。

  一、創設情境揭示課題。

  1、復習

  提問:前面我們已經學習了三角形的一些知識,誰能介紹一下呢?

  生回憶三角形的特征,三角形分類,三角形具有穩定性等內容。

  2、引入

  三角形具有穩定形,三角形家族是一個團結的家族,但今天家族內部卻發生了激勵的爭論。

  播放課件,提問:它們在爭論什么?

  什么是三角形的內角和?(板書:內角和)

  講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數加起來就是三角形的'內角和。

  二、自主探究,合作交流。

 。ㄒ唬┨岢鰡栴}:

  1、你認為誰說得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個三角形的內角和呢?

  學生可能會說:用量角器量一量三個內角各是多少度,把它們加起來,再比較。

 。ǘ┨剿髋c發現

  1、初步探索,提出猜想。

  (1)量一量

 、倭私饣顒右螅海ㄆ聊伙@示)

  A、在練習本上畫一個三角形,量一量三角形三個內角的度數并標注。(測量時要認真,力求準確)

  B、把測量結果記錄在表格中,并計算三角形內角和。

  C、討論:從剛才的測量和計算結果中,你發現了什么?

 。ㄒ龑仡櫥顒右螅

  ②、小組合作。

 、邸R報交流。

  你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發現了什么?

  (引導學生發現每個三角形的三個內角和都在1800,左右。)

  (2)提出猜想

  剛才我們通過測量和計算發現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)

  2、動手操作,驗證猜想

  這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

  引導:1800,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?

 。1)、小組合作,討論驗證方法。

 。2)分組匯報,討論質疑

  學生可能會出現的方法:

  A、撕拼的方法

  把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是1800,。

  討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

  B、折一折的方法

  把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于1800。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

  C提問:還有沒有其它的方法?

  3、回顧兩種方法,歸納總結,得出結論。

 。1)課件演示:兩種方法的展示。

 。2)引導學生得出結論。

  孩子們,三角形內角和到底等于多少度呢?”

  學生一定會高興地喊:“1800!

 。3)總結方法,齊讀結論

  我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們為自己的成功鼓掌!齊讀結論。(板書:得到結論)

 。4)解釋測量誤差

  為什么我們剛才通過測量,計算出來的三角形內角和不是1800,呢?

  那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于1800

 。ㄈ、回顧問題:

  現在你知道這兩個三角形誰說得對了嗎?(都不對!)

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內角和等于1800,。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數學書28頁第3題

  ∠A=180°— 90°—30°

  2、練一練:數學書29頁第一題(生獨立解決)

  ∠A=180°— 75°— 28°

  3、小法官:數學書29頁第二題

  4、拓展創新

  A D G

  B C E F H R

  ABC的內角和是()

  DEF的內角和是()

  GHR的內角和呢?

  小結:三角形的形狀和大小雖然不同,但是三角形的內角和都是180度。

  四、回顧課堂,滲透數學方法。

  1、總結:猜想—驗證—歸納—應用的數學方法。

  2、介紹:三角形內角和等于180度這個結論的由來;數學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動:探索——多邊形內角和

  板書設計:

  三角形內角和等于1800。

  猜想驗證得出結論應用

《三角形內角和》的教學設計8

  教學目標:

  1.知道三角形的內角和是180度,理解三角形內角和與三角形的大小無關。

 。.通過測量、計算、猜想、實驗等數學活動,積累認識圖形的方法和經驗,逐步推理、歸納出三角形內角和。

  3.關注學生在操作活動中遇到的真問題,培養學生誠實嚴謹的實驗態度,實事求是的科學的態度。

  教學重點:

  知道三角形的內角和是180度,理解三角形的內角和與三角形的大小、形狀無關。

  教學難點:

  經歷操作活動,推理、歸納出三角形的內角和。

  教學資源:

  多煤體課件,各種三角形,三角板,量角器,剪刀。

  教學活動:

  一、創設情境,導入新課。

  1.昨天我們學習了三角形的分類,三角形按角的特征怎么分類?按邊的特征怎么分類?

  2.信封中裝一個三角形露出一個銳角,猜一猜信封中裝的是一個什么三角形?能確定嗎?(露出一個鈍角)現在能確定了嗎?為什么現在就能確定了?(有一個鈍角,兩個銳的三角形是鈍角三角形)。

  3.三角形中還隱藏著那些知識?三角形的三個內角的和是多少度?這節課我們研究三角形的內角和。(板書課題:三角形的內角和)

  二、合件交流,操作發現。

  1.(課件)你知道三角尺內角的度數分別是多少嗎?每個直角三角尺的內角度數之和都是多少度?我們能根據三角尺的內角和是180度,就得出三角形的內角和的結論嗎?應該怎么研究?(應該把三角形中所有的類型銳角三角形、直角三角形、鈍角三角形都研究后,才能得出結論)(課件出示學習單)。

  2.組織學生小組合作:

  請同學們以4人為一個小組,三個人分別量一量,算一算一種三角形的內角的度數,小組長填寫學習單。老師巡視。①師:能不能只量出兩個角的度數,不量第三個角的度數,就開始填表、計算?(我們的研究必須是科學的、實事求是的,測量的數據必須是真實的,來不的半點馬虎)。②同桌交流,你們有什么發現?

  3.組織學生匯報交流:

 、倌莻組說一說你們組測量的數據和計算的結果?(學生的計算不是正好180度時,問:大約是多少度?)②你們有什么發現?(銳角三角形、直角三角形、鈍角三角形的內角和大約都是180度。③你能提出什么猜想?(我猜三角形的內角和是180度)老師板書:三角形的內角和是180°我們的猜想對不對,(在板書后面打上“?”),就需要我們驗證,請同學們想辦法驗證我們的猜想對不對?(學生通過折的方法剪拼進行驗證;學生通過剪、拼的`方法進行驗證。)

  4.學生展臺展示自己的難方法。通過驗證,我們發現三角形的內角和是180度。老師把“?”改為“!”。

  5.操作總會有誤差,有沒有別的方法說明呢?(老師課件演示長方形的四個角都是直角,所以長方形的內角和應為:90°×4=360°。將長方形沿對角線分割,可以分成兩個完全相等的直角三角形,所以直角三角形內角和應為:360°÷2=180°;沿高可以將任意三角形分成兩個直角三角形。由于前面證明了任意直角三角形的內角和是180°,因此兩個直角三角形的內角和應為:180°×2=360°。而直角三角形的兩個直角不屬于分割前三角形的內角,因此任意三角形的內角和應為:360°-180°=180°。)

  三、實踐應用,拓展延伸。

  1.這里有一條紅領巾,它的形狀是等腰三角形,其中∠1=110°,請計算出∠2=()°,∠3=()°。

  2.把下面這個三角形沿虛線剪成兩個小三角形,每個小三角形的內角和是多少度?(把一個三角形剪成兩個小三角形,雖然大小發生了變化,可是內角和依然是180度,說明三角形的內角和與三角形大小無關)。

  四、反思總結,自我建構。

  這節課你有什么收獲?

  這節課我們就研究到這兒,同學們再見!

《三角形內角和》的教學設計9

  一、說教材

  北師版八年級下冊第六章《證明一》,是在前面對幾何結論已經有了一定的直觀認識的基礎上編排的,而前幾冊對有關幾何結論都曾進行過簡單的說理,本章內容則嚴格給出這些結論的證明,并要求學生掌握證明的一般步驟及書寫表達格式。《三角形內角和定理的證明》則是對前幾節證明的自然延續。此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎。

  二、說目標

  1.知識目標:掌握“三角形內角和定理的證明”及其簡單的應用。

  2.能力目標培養學生的數學語言表達、邏輯推理、問題思考、組內及組間交流、動手實踐等能力。

  3.情感、態度、價值觀:

  在良好的師生關系下,建立輕松的學習氛圍,使學生體會獲得知識的成就感及與他人合作的樂趣,以增強其數學學習的自信心。

  4.教學重點、難點

  重點:三角形的內角和定理的證明及其簡單應用。

  難點:三角形的內角和定理的證明方法的討論。

  三、說學校及學生現實情況

  我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學校有遠程多媒體網絡教室,為師生提供了良好的學習硬件環境。我校學生幾乎全部來自本鎮農村,而我所教授的八年級四班學生,大多家庭貧苦,所以學習認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。

  四、說教法

  根據本節課教學內容特點,我采用啟發、引導、探索相結合的教學方法,使學生充分發揮學習主動性、創造性。

  五、說教學設計

  〈一〉、創設情景,直入主題

  一堂新課的引入是教師與學生活動的開始,而一個成功的引入,可使學生破除畏難心理,對知識在短時間內產生濃厚的興趣,接下來的`教學活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學生輕松做答,我肯定之后緊接著說:“本節課就是用證明的方法學習一個熟悉的結論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學生投入新課。

  〈二〉、交流對話,引導探索

  1、巧妙提問,合理引導

  證明思想的引入時,問:同學們,七年級時如何得到此結論?(留一定時間讓他們討論、交流、達成共識)學生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發了學生的學習興趣。接下來學生做題,我巡視。同時讓一學生板演。

  2、恰當示范,培養學生正確的書寫能力

  在學生做完之后,我與他們一道分析板演同學證明是否合理,并利用多媒體給出正確書寫方法。

  3、一題多解,放手讓學生走進自主學習空間

  正因為學生的預習,所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學生思考,繼而熱烈討論,此時,我又走到學生中去,對有困難的學生多加關注和指導,不放棄任何一個,同時,借此機會增進教師與學困生之間的情誼,為繼續學習奠定基礎。最后,請有新方法的同學敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

  4、展示歸納,合理演繹

  利用多媒體展示三角形內角和定理的幾種表達形式,以促其學以致用。

  5、反饋練習

  用隨堂練習來鞏固學生所學新知,另一方面進一步提高學生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學效果。

  〈三〉、課堂小結

  1 采用讓學生感性的談認識,談收獲。設計問題:

  2(1)、本節課我們學了什么知識?

 。2)、你有什么收獲?

  目的是發揮學生主體意識,培養其語言概括能力。

  六、說教學反思

  本節課主要是以嚴謹的邏輯證明方法,驗證三角形內角和等于180度。讓學生充分體會有理有據的推理才是可靠的。而證明思想、書寫的培養,是本節課的重點。自主學習、合作交流是新課程理念,也是我本節課的設計意圖。從學生課堂表現可以看出,教學效果良好。而學生的一些出乎意料的做法讓我倍感驚喜!把學生還給課堂,把課堂還給學生,也是我一貫的做法。

《三角形內角和》的教學設計10

  一、教材分析

  (一)教材的地位和作用《三角形的內角》內容選自人教實驗版九年義務教育七年級下冊第七章第二節第一課時。 “三角形的內角和等于180°”是三角形的一個重要性質,它揭示了組成三角形的三個角的數量關系,學好它有助于學生理解三角形內角之間的關系,也是進一步學習《多邊形內角和》及其它幾何知識的基礎。此外,“三角形的內角和等于180°”在前兩個學段已經知道了,但這個結論在當時是通過實驗得出的,本節要用平行線的性質來說明它,說理中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內角和定理也是幾何問題代數化的體現。

  (二)教學目標

  基于對教材以上的認識及課程標準的要求,我擬定本節課的教學目標為:

  1、知識技能:發現“三角形內角和等于180°”,并能進行簡單應用;體會方程的思想;尋求解決問題的方法,獲得解決問題的經驗。

  2、數學思考:通過拼圖實踐、合作探索、交流,培養學生的邏輯推理、大膽猜想、動手實踐等能力。

  3、解決問題:會用三角形內角和解決一些實際問題。

  4、情感、態度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數學,在數學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。通過添置輔助線教學,滲透美的思想和方法教育。

 。ㄈ┲仉y點的確立:

  1、重點:“三角形的內角和等于180°”結論的探究與應用。

  2、難點:三角形的內角和定理的證明方法(添加輔助線)的討論

  二、學情分析

  處于這個年齡階段的學生有能力自己動手,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。

  基于以上的情況,我確立了本節課的教法和學法:

  三、教法、學法

 。ㄒ唬┙谭

  基于本節課內容的特點和七年級學生的心理特征,我采用了“問題情境—建立模型—解釋、應用與拓展”的模式展開教學。本節課采用多媒體輔助教學,旨在呈現更直觀的形象,提高學生的積極性和主動性,并提高課堂效率。

 。ǘ⿲W法

  通過學生分組拼圖得出結論,小組分析尋求說理思路,從不同角度去分析、解決新問題,通過基礎練習、提高練習和拓展練習發掘不同層次學生的不同能力,從而達到發展學生思維能力和自學能力的目的,發掘學生的創新精神。

  四、教學過程

  我是以6個活動的形式展開教學的,活動1是為了創設情境引入課題,激發學生的學習興趣,活動2是探討三角形內角和定理的證明,證明的思路與方法是本節的難點,活動3到5是新知識的應用,活動6是整節課的小結提高。

  具體過程如下:活動1:首先用多媒體展示情境提出問題1,設計意圖是:創設情境,引起學生注意,調動學生學習的積極性,激發學生的學習興趣,導入新課。在此基礎上由學生分組,用事先準備好的三角形拼圖發現三角形的內角和等于180°。設計意圖是:從豐富的拼圖活動中發展學生思維的靈活性,創造性,從活動中獲得成功的體驗,增強自信心,通過小組合作培養學生合作、交流能力。在合作學習中增強集體責任感。再用多媒體演示兩個動畫拼圖的過程。設計意圖:讓學生更加形象直觀的理解拼圖實際上只有兩種,一種是折疊,一種是角的拼合,這為下一環節說理中添加輔助線打好基礎,從而達到突破難點的目的。

  前面通過動手大家都知道了三角形的內角和等于180°這個結論,那么你們是否能利用我們前面所學的有關知識來說明一下道理呢?請看問題2,請各小組互相討論一下,討論完后請派一個代表上來說明你們小組的思路[學生的說理方法可能有四種(板書添輔助線的四種可能并用多媒體演示證明方法)]設計的目的:通過添置輔助線教學,滲透美的思想和方法教育,突破本節的難點,了解輔助線也為后繼學習打下基礎。在說理過程中,更加深刻地理解多種拼圖方法。同時讓學生上板分析說理過程是為了培養學生的語言表達能力,邏輯思維能力,多種思路的'分析是為了培養學生的發散性思維。

  通過活動3中問題的解決加深學生對三角形內角和的理解,初步應用新知識,解決一些簡單的問題,培養學生運用方程思想解幾何問題的能力。

  活動4向學生展示分析問題的基本方法,培養學生思維的廣闊性、數學語言的表達能力。把問題中的條件進一步簡化為學生用輔助線解決問題作好鋪墊。同時培養學生建模能力。

  活動5通過兩上實際問題的解決加深學生對所學知識的理解、應用。培養學生建模的思想及能力。

  活動6的設計目的發揮學生主體意識,培養學生語言概括能力。

  【教學設計說明】

  1、《數學課程標準》指出:“本學段(7~9年級)的數學應結合具體的數學內容,采用?問題情境——建立模型——解釋、應用與拓展?的模式展開,讓學生經歷知識的形成與應用的過程…… ”因此,在本節課的教學中,我不斷的創造自主探究與合作交流的學習環境,讓學生有充分的時間和空間去動手操作,去觀察分析,去得出結論,并體驗成功,共享成功、

  2、體現自主學習、合作交流的新課程理念、無論是例題還是習題的教學均采用“嘗試—交流—討論”的方式,充分發揮學生的主體性,教師起引導、點撥的作用、

  3、結合評價表,對學生的課堂表現進行激勵性的評價,一方面有利于調動學生的積極性,另一方面有利于學生進行自我反思。

《三角形內角和》的教學設計11

  教學目標:

  1、教會學生主動探究新識的方法,學會運用轉化遷移數學思想。

  2、學生通過量、剪、拼、擺、分割等驗證三角形內角和方法的比較,主動掌握三角形內角和是1800,并運用所學知識解決簡單的實際問題,發展學生的觀察、歸納、概括能力和初步的空間想象力。

  教學重點: 理解并掌握三角形的內角和是180°。

  教學難點: 驗證所有三角形的內角之和都是180°。

  教具準備: 多媒體課件。

  學具準備: 量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學過程:

  一、導入

  師:知道今天我們學習什么內容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

  師:什么是內角?你能把你手中三角形的三個內角用角1、角2、角3標出來嗎?

  師:還有一個關鍵字“和”,什么是三角形的內角和?

  師:你認為三角形的內角和是多少度?你呢?都知道?是多少度啊?看來都知道了,就不用再學了吧?你還想學什么?

  師:看來我們不僅要知道三角形的內角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

  生:量一量的方法。

  師:光量就知道了?還要算一算。

  師:這種方法可行嗎?下面咱就來試試,請同學們4人一組,分工合作,先測量內角,再計算求和。小組長把計算的過程記錄下來。開始吧。

  驗證:量角、求和

  小組匯報

  生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內角和是180度。

  生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內角和是180度。

  生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內角和是180度。

  師:從剛才的交流中,你發現了什么?

  生:不管是銳角三角形、直角三角形,還是鈍角三角形,內角和都是180度。

  師:下面同學測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現誤差,得出的結論就難以讓人信服?磥硭坪跤昧康姆椒ㄟ不能充分證明。(劃問號)

  師:還敢接受更大挑戰嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內角和是180度,你有辦法嗎?或許下面的同學還有別的方法,下面就請同學們互相交流交流,動手試一試吧!

  師:這種方法怎么樣?(鼓掌)老師感到非常的'驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

  師:你們小組每個同學都動腦筋了,謝謝你們。

  師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

  師:其實大家能用3種方法證明已經很不簡單了,現在我們就能很自信的說三角形的內角和是180度。(擦別的)

  師:其實對我來說重要的不是知識的結論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創造性的方法。現在我們再來一塊回顧一下。

  師:這幾種方法都足以說明三角形的內角和是180度。(結論)

  師:剛才同學們發揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構成了一個三角形,請你睜大眼睛仔細觀察,你發現了什么?

  請你再仔細觀察,你發現了什么?其實兩個底角減少的度數,正是頂角增大的度數。如果我繼續按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態過程是不是也能證明三角形的內角和是180度?

  師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。

  師:現在我們知道了“三角形的內角和是180度”,能不能用這個知識來解決一些問題?

  生:能。

  二、遷移和應用

  (一)點將臺:

  下面哪三個角是同一個三角形的內角?

  (1)30 °、60 °、45 °、90 °

 。2)52 °、46 °、54 °、80 °

  (3)45 °、46 °、90 °、45 °

 。ǘ┪視

  1、已知∠1,∠2,∠3是三角形的三個內角。

 。1)∠1=38° ∠2=49°求∠3

 。2)∠2=65° ∠3=73° 求∠1

  2、已知∠1和∠2是直角三角形中的兩個銳角

  (1)∠1=50°求∠2

  (2)∠2=48°求∠1

  3、已知等腰三角形的一個底角是70°,它的頂角是多少度?

 。ㄈ。變變變!

 。1)一個三角形中, ∠1 、∠2、∠3。

 。2)如果把∠3剪掉,變成了幾邊形?它的內角和變成多少度呢?

 。3)如果再把∠2剪掉,剩下圖形的內角和是多少度呢?

  三、全課小結

  師:通過一節課的探索,你有什么收獲?

  生答(略)

  我的幾點認識:

  結合《三角形的內角和》這節課,我對空間與圖形這一部分內容,簡單的談一下自己的認識。

  空間與圖形這一部分內容,可以用這幾個字來概括:難理解,難受,難掌握。在本節課的教學中,三角形的內角和概念比較抽象,學生比較難理解。尤其是讓學生探究三角形的內角和是180度,對學生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內角和,學生也只能機械記憶是180度。那如何更好的讓學生掌握和接受呢?針對這些特點我采用了一下幾點做法:

  1、根據學生的知識特點和生活經驗,在原有基礎上創造性的使用教材。

  在教學本節課的內容時,學生在自己的日常生活或大部分都已經知道三角形的內角和是180。因材在這樣的情況下,我創造性的使用教材。不是讓學生通過自己動手操作之后才發現三角形的內角和是180,而是直接把問題拋給學生,你們知道三角形的內角和是多少度嗎?

  你們怎么知道的?能自己證明么?這樣學生從被動學習者的角色,

  立刻轉入主動學習者的角色之中。這樣既能使學生很好的掌握知識,又能使學生激發興趣,提高積極性。

  2、讓學生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。

  在探究的過程中,我們采用了小組合作學習方式,這樣既能給學生提供交流的空間,又能在短時間內有效學習。學生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學生發現三角形的內角和的確是180度。

  總之,在教學空間與圖形的內容時,一定要讓學生看到“圖形",讓學生想象"空間”。

《三角形內角和》的教學設計12

  教學內容 :小學數學教材第八冊P137—P138及練習三十一的第13—15題。

  教學目的:

  1.通過教學向學生滲透“認識來源于實踐,服務于實踐”的觀點。

  2.使學生通過學習“三角形內角和”能解決一些實際問題。

  3.進一步培養學生動手操作的能力。

  教學重點: 對三角形內角和知識的實際運用。

  教學難點:通過動手操作驗證三角形的內角和是180°

  教 法:實驗法,演示法

  教具準備:三種類型的三角形若干個。

  學具準備:三角形紙片若干、多媒體課件。

  教學過程:

  一、課前一練

  師:前幾節課我們一直在研究三角形,有關三角形,你掌握了哪些知識呢?

  二、猜角設疑,揭示課題

  師:看來同學們對三角形已經非常熟悉了,下面我們來做個游戲,這個游戲叫“猜角”。請同學們拿起桌子上量好角度的三角形。你只要報出三角形中任意兩個角的度數,我就能猜出你第三個角的度數。相信嗎?下面我們來試一試。

 。◣熒陆腔顒樱

  師: 你們想不想知道老師有什么法寶,能這么快說出第三個角的度數?通過這節數學課的學習,你就可以揭開這個奧秘了。(板書“三角形的內角和”)

  三、自主探索,合作交流

  師:看到這個題目,你想知道些什么呢?

  生: 什么是三角形的內角?

  生:三角形的內角和是多少度?

  生:什么叫三角形的內角和?

  生:我們學習三角形的內角和有什么用處?

  通過這節課的學習,我們就要知道,三角形的內角和是多少度以及它在實際生活中的應用。

  1、理解“內角”

  師:我們先來看第一個問題:什么是三角形的內角?誰想說說自己的想法?

  生:“內”是里的意思,“內角”就是三角形里面的角。

  師:你知道三角形有幾個內角嗎?(三個)

  2、理解“內角和”

  師:那我們再來想一想三角形的內角和指的是什么呢?

  生:(邊指邊說)“內角和”就是將三角形里面的角相加的度數。

  生:我還有補充。三角形的內角和是三個角相加的度數。

  師:說的真好,為了方便,我們將三角形的每個內角編上序號1、2、3,我們叫它∠1,∠2,∠3,∠1,∠2,∠3的度數和,就是這個三角形的內角和。(課件出示)

  3、探究新知。

 、俜止

  師:研究三角形的內角和,就要對每一類的三角形進行研究。如果咱們分工研究,你們組愿意研究哪一類的三角形呢?(小組進行選擇)先別著急,每位同學想想,你準備采用什么方法來研究三角形的內角和?把你的想法簡單的在小組內說一說。我發現有的小組已經胸有成竹了。下面請各小組組長來領取你們要研究的三角形和需要的材料。為了研究方便,請把你研究的三角形的內角也編上編號,如果遇到小組解決不了的問題,別忘了老師在你身邊。

  ②小組合作探究內角和。

 、蹖W生匯報交流。

  師:我發現大部分小組已完成了研究,哪個小組愿意派代表到前面匯報你們研究的方法和結果。

  (小組匯報)

 、艿贸鼋Y論。

  師:誰能用一句話來概括一下這幾個同學的觀點。

 。ㄈ切蔚膬冉呛偷扔180°)

  師小結:我們研究了銳角三角形、直角三角形,鈍角三角形,其實也就包括了所以的三角形,從而可以得出結論,三角形的內角和都等于180°(板書)

  4、學習例題。

  師:根據這一規律,如果知道三角形中兩個角的度數,就能求出第三個角的度數。

  課件出示例題:在三角形中,已知∠1=78°,∠2=44°,求∠3的度數。

  學生獨立解答,集體訂正,注意糾正學生的書寫格式。

  四、應用深化

  1、變式練習

  師:三角形兄弟聽說咱們發現了它們的內角和是180°,非常高興。瞧,它們也特地趕來了,請聽聽它們在說些什么?(課件出示)

  你會解決它們提出的問題嗎?

  2、練習三十一的第15題。

  師:同學們放過風箏嗎?你見過的風箏都是什么形狀的?

  這些形狀都是美麗的對稱圖形,看!小紅的`爸爸給小紅買了什么樣的風箏?(課件出示)你是怎么想的?

  3、搶答:

  師:原來生活中也會應用到三角形內角和的知識,同學們回憶一下,剛才老師猜角的秘密是什么?(三角形內角和是180°)

  師:如果讓你來猜你會猜嗎?下面咱們以小組為單位進行搶答,規則是:先舉牌者先回答,答對的小組可獲得一面小旗,最后小旗多的小組是比賽的冠軍。你們做好準備了嗎?

  (進行猜角游戲)

  已知∠1,∠2,∠3是三角形的三個內角。

  (1)∠1=38° ∠2=49°求∠3

 。2)∠2=65° ∠3=73°求∠1

  已知∠1和∠2是直角三角形中的兩個銳角

 。1)∠1=50°求∠2

  (2)∠2=48°求∠1

  師:現在每小組都得到了紅旗,但最后獲勝者是第幾小組,讓我們用掌聲向他們表示祝賀。

  4、拓展練習

  師:同學們,我們已經知道了三角形有三個內角,你知道長方形、正方形各有幾個內角嗎?它們的內角和又是多少度呢?那么任意四邊形的內角和又是多少度呢?任意五邊形、六邊形、七邊形……內角和又是多少呢?有興趣的同學可以研究一下。

  五、反思回顧

  師:通過本節課的學習,你有什么收獲?

  師:同學們通過探索和合作交流發現了三角形的內角和是180°,充分發揮了你們的聰明才智,你們真不簡單!希望你們在今后的學習中繼續探索,掌握更多的本領!

《三角形內角和》的教學設計13

  教學內容

  人教版小學數學第八冊第五單元第85頁例5

  任務分析

  教材分析: 《三角形的內角和》是義務教育課程標準實驗教科書(數學)四年級下冊第五單元《三角形》中的一個教學內容。這部分內容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質,有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索并歸納出這一規律,即任意一個三角形,它的內角和都是180度。教材在編寫上也深刻的體現出了讓學生探究的特點,通過動手操作探究發現三角形內角和為180度。教學內容的核心思想體現在讓學生經歷猜想—驗證—結論的過程,來認識和體驗三角形內角和的特點。

  學情分析:通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內角和是180°;并在相關的補充習題和數學練習冊的練習中,也有要求測量任意三角形的三個內角的度數并求出它們的和的練習,很多學生已經知道了三角形的內角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節課上的主要任務是通過實驗操作驗證三角形的內角和是180°。

  教學目標

  1、通過實驗、操作、推理歸納出三角形內角和是180°。

  2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數并運用解決實際生活問題。

  3、通過拼擺,感受數學的轉化思想。

  教學重點

  探究發現和驗證“三角形的內角和180度”。

  教學難點

  驗證三角形的內角和是180度。

  教學準備

  多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學過程

  一、復習舊知,學習鋪墊

  1、一個平角是多少度?等于幾個直角?

  2、如下圖,已經∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規律

  1、說明三角形的三個內角和

  說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

  師(指出):三角形的這三個角叫做三角形的三個內角,這三個內角的度數和叫做三角形的內角和。

  板書課題:“三角形的內角和”。

  揭示課題:今天我們一起來探究三角形的內角和有什么規律。

  2、探究三角形的內角和規律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

  生討論匯報,并引導學生發現:三角形的內角和接近180°。

  師:三角形的內角和接近180°,那它到底與180° 有怎樣的關系呢?

  學生預設:有學生可能會說出三角形的內角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

  生可能很難想到,可以提示學生:把三個內角拼成一個角就只要量一次角。讓我們一起動手做一做

  如圖:

 。1)

  銳角的三個內角拼成了一個平角,引導學生說出:銳角三角形的內角和是180°.

 。2)

  讓學生小組合作用同樣的方法,發現:直角三角形的內角和也是180°.

 。3)

  讓學生獨立用同樣的方法,發現:鈍角三角形的內角和也是180°.

  引導學生歸納:三角形的內角和是180°。

  是不是所有的三角形的`內角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

  板書:三角形的內角和是180°

  三、鞏固練習,應用規律

  1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

  學生獨立完成,并說出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

  學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規律

  1、求出下面各角的度數。

 。1) (2)

  2、判斷

 。1)三角形任意兩個內角的和大于第三個角。( )

 。2)銳角三角形任意兩個內角的和大于直角。( )

 。3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

  ( ) ( )

  五、課堂小結,分享提升

  1、談談這節課你有什么收獲?

  2、課后思考題

  三角形的內角和是180°,那長方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁第12題,完成89頁16題)

  板書設計

《三角形內角和》的教學設計14

  【教材內容】

  北京市義務教育課程改革實驗教材(北京版)第九冊數學

  【教材分析】

  《三角形內角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學生已經掌握了三角形的穩定性和三角形的三邊關系相關知識后對三角形的進一步研究,探索三角形的內角和等于180°。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°。讓學生在自主探索中發現三角形的又一特性,更加深入的培養了學生的空間觀念。

  【學生分析】

  在四年級學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

  【教學目標】

  1、通過量、拼、折、剪等方法探索和發現三角形的內角和等于180°掌握并會應用這一規律解決實際的問題。

  2、通過討論、爭辯、操作、推理發展學生動手操作、觀察比較和抽象概括的能力。

  3、使學生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。

  【教學重點】

  讓學生經歷“三角形內角和是180度”這一知識的形成發展和應用的全過程。

  【教學難點】

  能利用學到的知識進行合情的推理。

  【教具學具準備】

  課件、各種各樣的直角三角形、長方形、剪刀、量角器、數學紙

  【教學過程】

  一、學具三角板,引入新課

  1、(出示兩個直角三角板),問:這是咱們同學非常熟悉的一種學習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

  2、顧名思義一個三角形都有幾個角呀?(三個)

  3、認識內角

  (1)在三角形的.內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書:三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

 。2)這個三角形內有幾個內角?(三個)這個呢?(三個)

  (設計意圖:由學生最熟悉的三角板引入新課,激發學生興趣的同時為后面的學習做準備)

  二、動手操作,探索新知

 。ㄒ唬┲苯侨切蝺冉呛

  ⅰ、特殊直角三角形內角和

  1、根據我們以往對三角板的了解,你還記得每個三角形上每個內角各是多少度嗎?(生說度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。

  2、觀察這兩個三角形的度數,你有什么發現?

  生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)

  生2:我還發現他們內角加起來是180度。師:他真會觀察,你發現了嗎?快算一算是不是他說的那樣?

 。ㄕn件):(1)90°+60°+30°=180°)

  那么另一個三角板的三個內角的總度數是多少?

 。ㄉ卮,師課件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:這三個內角合起來是180度)

  4、在三角形內三個內角的總度數又簡稱為三角形的內角和。(板書:和)

  5、這個直角三角形的內角和是多少度?另一個呢?

  6、你還記得180度是我們學過的是什么角嗎?(平角)趕快在你的數學紙上畫一個平角。

 。◣煶鍪疽粋平角)問:平角是什么樣的?

  7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內角和就組成這樣的一個角呀。

 、、一般直角三角形內角和

  1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。

  2、剛才的那兩個直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學具,你能充分地利用這些學具,想辦法來研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。

 。1)小組活動(2)匯報

  哪個組愿意把你們的研究成果向大家展示?每個小組派代表發言。(在實物展臺上演示)

  三角形的種類

  驗證方法

  驗證結果

  *“量一量”的方法:

  板書:有一點誤差的度數

  *“剪一剪”的方法:

  我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)

  現在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)

  你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?

  還有其他方法嗎?

  *“折一折”的方法:

  預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?

  學生演示(課件:折的過程)

 、趯W生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內角拼成平角。(板書:折)

  *推理:

  你們有用長方形來研究直角三角形內角和度數的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)

  這種方法就叫做推理,一般到中學以后我們經常會用到。(板書:推理)

  3、小結

 。1)通過我們剛才的研究,我們發現直角三角形的內角和都是多少度呀?(板書:內角和是180°)剛才我們在測量的時候為什么會出現179度183度呢?看來只要是測量不可避免的會產生誤差。

  (2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)

  (設計意圖:引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。)

 。ǘ、銳角三角形、鈍角三角形的內角和

  1、請你們任意畫一個鈍角三角形,一個銳角三角形

  2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學到的知識來研究你所畫的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學生操作,匯報,課件演示)我們是用什么方法來研究的?

  3、學生模仿老師操作說理

  4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的內角和呢?我們就可以說所有三角形的內角和都是180度。

  師:這也是三角形的一個特性,現在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內角和是180°)。

 。ㄔO計意圖:引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。)

  三、鞏固新知,拓展應用

  我們就用三角形的這一特性來解決一些問題

  1、兩個三角形拼成大三角形

  (1)每個三角形的內角和都是少度?

 。2)(課件把兩個三角形拼在一起)它的內角和是多少度?(這時學生答案又出現了180°和360°兩種。)師:究竟誰對呢

  2、一個三角形去掉一部分

  (1)這是一個三角形,他的內角和是多少度?我從中剪去一個三角形他的內角和是多少度?

  再剪去一個三角形呢?(課件演示)

  你們看這兩個三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來三角形的內角和的度數和他的大小形狀都無關。

  (2)我再把這個三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)

  你能利用我們三角形的內角和是180度來研究這個四邊形的內角和是多少度嗎?

 。3)如果五邊形,你還能求出他的度數嗎?

 。ㄔO計意圖:充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。)

  四、總結評價、延伸知識

  通過這節課的學習研究你掌握了哪些知識?我們是怎樣研究的呢?

  師:先研究的是特殊直角三角形的內角和是180度,接著通過量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內角和是180度。

 。ㄔO計意圖:幫助學生梳理本節課的知識脈絡。)

《三角形內角和》的教學設計15

  【教學內容】

  《人教版九年義務教育教科書 數學》四年級下冊《三角形的內角和》

  【教學目標】

  1.使學生知道三角形的內角和是180 ,并能運用三角形的內角和是180 解決生活中常見的問題。

  2.讓學生經歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內角和是180 。

  3.培養學生自主學習、互動交流、合作探究的能力和習慣,培養學習數學的興趣,感受學習數學的樂趣。

  【教學重點】

  使學生知道三角形的內角和是180 ,并能運用它解決生活中常見的問題。

  【教學難點】

  通過多種方法驗證三角形的內角和是180 。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀。筷子若干。

  【教學過程】

  一、激趣導入,提煉學習方法

  1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規則的白紙,以一位老木匠的身份出現在學生面前。激發學生的.好奇心。然后自述:“你們好,我是一個有三十多年工作經驗的老木匠了。我收了三個徒弟,他們已經從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2.繼續以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4.導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內角的和是多少?(板書課題:三角形的內角和)

  二、動手操作,探索交流新知

  1.分組活動,探索新知

  根據學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發給以下幾種學具:

  折一折組同學發給上面的三角形一組。

  拼一拼組同學發給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

  2.多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

  (1)首先要求學生說一說你們小組是怎樣進行探究的。

  (2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的結論,因為這是知識的形成過程。)

  (3)請學生說說通過探究活動你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導這一組從探究的過程和結論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的。快來把你們的方法給大家匯報匯報。

  同樣引導這一組從探究的過程和結論與同學、老師交流。

  3.思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內角和就是180 。(板書:三角形的內角和是180 )

  四、走進生活,提升運用能力

  1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?

  2.給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結

  師:徒弟們你們經過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老!蹦銈兿律胶筮要繼續探索,所以我要把我畢生都沒有完成的任務交給你們去研究。

  大屏幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內角和是多少度嗎?

【《三角形內角和》的教學設計】相關文章:

《三角形的內角和》教學設計12-22

三角形內角和教學設計07-25

《三角形內角和》教學設計10-01

三角形的內角和教學設計07-13

三角形的內角和的教學設計09-01

《三角形內角和》教學設計(精)10-01

【精華】三角形內角和教學設計09-09

三角形內角和教學設計優秀09-22

【集合】三角形的內角和教學設計07-31

三角形的內角和的教學設計[經典15篇]09-02

真人一级一级97一片a毛片√91,91精品丝袜无码人妻一区,亚国产成人精品久久久,亚洲色成人一区二区三区
最新在线日韩欧美中文字幕 | 亚洲国产精品99页 | 日本在线日韩在线一区二区 | 中日韩视频在线观看一区二区三区不卡 | 午夜福利中文字幕有码 | 自拍偷自拍亚洲一区 |